• 제목/요약/키워드: Min. Creep Rate

검색결과 31건 처리시간 0.023초

A practical power law creep modeling of alloy 690 SG tube materials

  • Lee, Bong-Sang;Kim, Jong-Min;Kwon, June-Yeop;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2953-2959
    • /
    • 2021
  • A new practical modeling of the Norton's power law creep is proposed and implemented to analyze the high temperature behaviors of Alloy 690 SG tube material. In the model, both the stress exponent n and the rate constant B are simply treated as the temperature dependent parameters. Based on the two-step optimization procedure, the temperature function of the rate constant B(T) was determined for the data set of each B value after fixing the stress exponent n value by using the prior optimized function at each temperature. This procedure could significantly reduce the numerical errors when using the power law creep equations. Based on the better description of the steady-state creep rates, the experimental rupture times could also be well predicted by using the Monkman-Grant relationship. Furthermore, the difference in tensile strengths at high temperatures could be very well estimated by assuming the imaginary creep stress related to the given strain rate after correcting the temperature effects on the elastic modulus.

Alloy 690 전열관의 크리프 변형 및 파단 거동 (Creep Deformation and Rupture Behavior of Alloy 690 Tube)

  • 김우곤;김종민;김민철
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.49-55
    • /
    • 2020
  • Creep rupture data for Alloy 690 steam generator tubes in a pressurized water reactor are essentially needed to demonstrate a severe accident scenario on thermally-induced tube failures caused by hot gases in a damaged reactor core. The rupture data were obtained using the tube specimens under different applied-stress levels at 650℃, 700℃, 750℃, 800℃, and 850℃. Important creep constants were proposed using various creep laws in terms of Norton power law, Monkman-Grant (M-G) relation, damage tolerance factor (λ), and Zener-Hollomon parameter (Z). In addition, a creep activation energy (Q) value for Alloy 690 tube was reasonably determined using experimental data. Creep behaviors such as creep strength, creep rates, rupture elongation showed the results of temperature dependence well. Modified M-G plot improved a correlation of the creep rate and rupture life. Damage tolerance factor for Alloy 690 tubes was found to be λ =2.20 in an average value. Creep activation energy for Alloy 690 tube was optimized for Q=350 (kJ/mol). A plot of Z parameter obeyed a good linearity, and the same creep mechanism was inferred to be operative in the present test conditions.

포화점성토의 비배수 CREEP 성질에 의한 공극수압의 거동 (Pore Water Pressure Behavior due to Undrained Creep of Saturated Clay)

  • 강우묵;조성섭;지인택
    • 한국농공학회지
    • /
    • 제30권3호
    • /
    • pp.38-50
    • /
    • 1988
  • carried out to present a rheology model which is able to treat time-dependent properties of clay. The results were summarized as follow ; 1. The slope (a(e1)) of deviator stress in strain rate test was independent on axial strain, and pore water pressure was decreased with increment of strain rate. 2. The pore water pressure in a stress relaxation condition was not changed when the strain rate before stress relaxation was 0.05%/min., but it was increased with increment of time when the strain rate before stress relaxation was 0.2%/min 3. The greater the stress condition (q/qmax) and the strain rate before creep test became, the greater the increment rate of axial strain in creep test became. 4. SEKIGUCHI's constitutive equation was slightly overpredicted while empirical equation proposed in the study was well coincided with measured values. 5. The constitutive equation induced by a strain function could be dealed with a behavior of the pore water pressure increased with increment of elapsed time after primary consolidation.

  • PDF

순동의 고온에서의 크리프 균열성장 특성 (Characteristics of Creep Crack Growth in Pure Copper at Elevated Temperature)

  • 남승훈;김엄기;정민우;서창민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.495-500
    • /
    • 2001
  • The significant creep in copper takes place at relatively low temperature and applied stress. Thus the study on modeling of creep behavior using the copper should provide researchers with benefits such as time for the test. In this study, a test of creep crack growth regarding copper was performed at 400 and $500^{\circ}C$, and analyzed. As result, the crack growth rate at $500^{\circ}C$ turned out to be 10 times higher than that at $400^{\circ}C$ in terms of $C^*$, while the crack growth rate at $500^{\circ}C$ was several hundreds times higher than that at $400^{\circ}C$ in terms of K. Moreover, a linear relationship between the crack growth rate and $C^*$ at the same temperature was established.

  • PDF

Creep strain modeling for alloy 690 SG tube material based on modified theta projection method

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1570-1578
    • /
    • 2022
  • During a severe accident, steam generator (SG) tubes undergo rapid changes in the pressure and temperature. Therefore, an appropriate creep model to predict a short term creep damage is essential. In this paper, a novel creep model for Alloy 690 SG tube material was proposed. It is based on the theta (θ) projection method that can represent all three stages of the creep process. The original θ projection method poses a limitation owing to its inability to represent experimental creep curves for SG tube materials for a large strain rate in the tertiary creep region. Therefore, a new modified θ projection method is proposed; subsequently, a master curve for Alloy 690 SG material is also proposed to optimize the creep model parameters, θi (i = 1-5). To adapt the implicit creep scheme to the finite element code, a partial derivative of incremental creep with respect to the stress is necessary. Accordingly, creep model parameters with a strictly linear relationship with the stress and temperature were proposed. The effectiveness of the model was validated using a commercial finite element analysis software. The creep model can be applied to evaluate the creep rupture behavior of SG tubes in nuclear power plants.

냉간 압연 방향에 따른 Zr-1.1Nb-0.05Cu 합금의 크리프 거동 (Effect of Cold-Rolling Direction on Creep Behaviors in Zr-1.1Nb-0.05Cu Alloy)

  • 설용남;정양일;최병권;박정용;홍순익
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.355-361
    • /
    • 2011
  • Creep behaviors of the Zr-1.Nb-0.5Cu (HANA-6) alloy strips with different orientations were investigated. Anisotropy was observed in the samples depending on their physical orientations due to the formation of texture in their microstructures. The creep strain rate was increased as the test stress and temperature increased. The rate was higher along the rolling-direction than in the transverse-direction irrespective of annealing conditions. However, the samples with $45^{\circ}$ direction showed different behaviors depending on the annealing temperature. When strips were finally annealed at $600^{\circ}C$ for 10 min, the primary creep rate of the $45^{\circ}$ strip was the highest among the various orientations although the saturated creep rate was the lowest. In the case of final annealing at $660^{\circ}C$ for 4 h, the highest creep rate occurred throughout the creep test in the $45^{\circ}$ strip. It is considered that the fraction of (100) planes along the direction of creep deformation affect the creep rates.

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

사형주조한 Mg-Nd-Zr-Zn합금의 고온 크리이프강도 (High Temperature Creep Strength of Mg-Nd-Zr-Zn Alloy in Sand Castings)

  • 강대민;박경도;박지희
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.83-88
    • /
    • 2011
  • Magnesium alloys have been focussed for the applications for lightweight of vehicle and electronics due to their high strength, low specific density and good damping capacity. This paper deals with the creep strength of Mg-Nd-Zr-Zn alloy. For the alloy, pure magnesium(99.9%) was melt with atmosphere of $0.3%SF_6$ and $25%CO_2$. After melting, 0.3% of zinc was inserted to stir for 10min at elevated temperature of $770^{\circ}C$. Master alloys of Mg-15%Nd and Mg-15%Zr were stirred in furnace. The creep tests were performed to obtain creep rate and rupture in the temperature range of 200 to $220^{\circ}C$ and 280 to $310^{\circ}C$ at an applied stress of 156 to 172MPa and 78 to 94MPa, respectively. The deformation mechanism was predicted dislocation climb from measured apparent activation energy and stress exponent. Also the increaser the temperature and stress the lower the stress exponent and activation energy. Finally, LMP parameter gives good information for the predicted creep rupture life.

0.5Tm 이하에서의 AZ31 마그네슘 합금 크리이프 특성에 관한 연구 (A study on the creep characteristic of AZ31 Mg alloy at below 0.5Tm)

  • 안정오;강대민
    • Design & Manufacturing
    • /
    • 제2권6호
    • /
    • pp.43-48
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined over the temperature range below 0.5Tm and stress range of 109~187MPa, respectively, in order to investigate the creep behavior. AZ31 Magnesium alloy identify the activation energy for creep deformation and the stress dependence to creep rate at below 0.5Tm, and then investigate the mechanism for creep deformation and creep rupture life of AZ31 Magnesium alloy.

  • PDF

1% Cr-Mo-V 강 회전자 축의 크리이프 특성과 수명예측에 관한 연구(I) (A Study on the Creep Properties and Life Prediction of 1% Cr-Mo-V Steel Roter Shaft(I))

  • 조판근;정순호;장윤석;이치우
    • 대한기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.519-528
    • /
    • 1986
  • 본 연구에서는 우선 1차적으로 한국중공업에서 제조한 실제의 터어빈 회전자 축에서 시편을 채취하여 화력발전소 터어빈의 작동 온도에서의 크리이프 거동을 실험 하고, Larson-Miller 법 및 Orr-sherby-Dorn 법에 의하여 수명을 예상하엿으며 열처리 조건의 변화에 따른 크리이프 특성 변화를 고찰하였다.