DOI QR코드

DOI QR Code

Effect of Cold-Rolling Direction on Creep Behaviors in Zr-1.1Nb-0.05Cu Alloy

냉간 압연 방향에 따른 Zr-1.1Nb-0.05Cu 합금의 크리프 거동

  • Seol, Yong-Nam (LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Department of Nano Materials Engineering, Chungnam National University) ;
  • Jung, Yang-Il (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Choi, Byoung-Kwon (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Park, Jeong-Yong (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Hong, Sun-Ig (Department of Nano Materials Engineering, Chungnam National University)
  • 설용남 (한국원자력연구원 경수로핵연료기술개발부, 충남대학교 나노소재공학과) ;
  • 정양일 (한국원자력연구원 경수로핵연료기술개발부) ;
  • 최병권 (한국원자력연구원 경수로핵연료기술개발부) ;
  • 박정용 (한국원자력연구원 경수로핵연료기술개발부) ;
  • 홍순익 (충남대학교 나노소재공학과)
  • Received : 2011.03.25
  • Published : 2011.05.25

Abstract

Creep behaviors of the Zr-1.Nb-0.5Cu (HANA-6) alloy strips with different orientations were investigated. Anisotropy was observed in the samples depending on their physical orientations due to the formation of texture in their microstructures. The creep strain rate was increased as the test stress and temperature increased. The rate was higher along the rolling-direction than in the transverse-direction irrespective of annealing conditions. However, the samples with $45^{\circ}$ direction showed different behaviors depending on the annealing temperature. When strips were finally annealed at $600^{\circ}C$ for 10 min, the primary creep rate of the $45^{\circ}$ strip was the highest among the various orientations although the saturated creep rate was the lowest. In the case of final annealing at $660^{\circ}C$ for 4 h, the highest creep rate occurred throughout the creep test in the $45^{\circ}$ strip. It is considered that the fraction of (100) planes along the direction of creep deformation affect the creep rates.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. E. Kohn, ASTM STP 633, 402 (1977).
  2. K.L. Murty, J. Ravi, and Wiratmo, Nucl. Eng. Des. 156, 359 (1995). https://doi.org/10.1016/0029-5493(94)00960-7
  3. K.L. Murty and I. Charit, Prog. Nucl. Energy 48, 325 (2006). https://doi.org/10.1016/j.pnucene.2005.09.011
  4. D. Gilbon, A. Soniak, S. Doriot, and J.P. Marson, ASTM STP 1354, 51 (2000).
  5. Y.-I. Jung, Y.-N. Seol, B.-K. Choi, J.-Y. Park, and Y.-H. Jeong, J. Nucl. Mater. 396, 303 (2010). https://doi.org/10.1016/j.jnucmat.2009.10.058
  6. J. J. Kearns, Bettis Atomic Power Laboratory, Report WARP-TM-472 (1965).
  7. V.S. Lyashenko, V.N. Bykov, and L.V. Pavlinov, Phys. Met. Metallogr. 8, 40 (1959).
  8. M.I. Alymov, E.N. Pirogov, and L.L. Artyaukhina, Atom. Energ. 62, 387 (1987).
  9. M. Pahutova, J. Cadek, and V. Cerni, J. Nucl. Mater. 11, 151 (1973).
  10. L. Jiang, M.T. Perez-Prado, P.A. Gruber, E. Arzt, O.A. Ruano, and M.E. Kassner, Acta Mater. 56, 1228 (2008). https://doi.org/10.1016/j.actamat.2007.11.017
  11. W. Tyson, Acta Metall. 15, 574 (1967). https://doi.org/10.1016/0001-6160(67)90096-X
  12. R.G. Ballinger and R.M. Pelloux, J. Nucl. Mater. 97, 231 (1981). https://doi.org/10.1016/0022-3115(81)90471-2
  13. S.T. Mahmood and K.L. Murty, J. Mater. Eng. 11, 315 (1989). https://doi.org/10.1007/BF02834141
  14. K.L. Murty, ASTM STP 1023, 570 (1989).
  15. Y.-I. Jung, M.-H. Lee, J.-Y. Park, and Y.-H. Jeong, Met. Mater. Int. 15, 803 (2009). https://doi.org/10.1007/s12540-009-0803-8
  16. O. Castelnau, H. Francillette, B. Bacroix, and R.A. Lebensohn, J. Nucl. Mater. 297, 14 (2001). https://doi.org/10.1016/S0022-3115(01)00589-X
  17. M.-H. Lee, Y.-I. Jung, B.-K. Choi, S.-Y. Park, H.-G. Kim, J.-Y. Park, and Y.-H. Jeong, J. Kor. Inst. Met. & Mater. 47, 474 (2009).