Browse > Article
http://dx.doi.org/10.1016/j.net.2021.11.005

Creep strain modeling for alloy 690 SG tube material based on modified theta projection method  

Moon, Seongin (Korea Atomic Energy Research Institute)
Kim, Jong-Min (Korea Atomic Energy Research Institute)
Kwon, Joon-Yeop (Korea Atomic Energy Research Institute)
Lee, Bong-Sang (Korea Atomic Energy Research Institute)
Choi, Kwon-Jae (Korea Atomic Energy Research Institute)
Kim, Min-Chul (Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.54, no.5, 2022 , pp. 1570-1578 More about this Journal
Abstract
During a severe accident, steam generator (SG) tubes undergo rapid changes in the pressure and temperature. Therefore, an appropriate creep model to predict a short term creep damage is essential. In this paper, a novel creep model for Alloy 690 SG tube material was proposed. It is based on the theta (θ) projection method that can represent all three stages of the creep process. The original θ projection method poses a limitation owing to its inability to represent experimental creep curves for SG tube materials for a large strain rate in the tertiary creep region. Therefore, a new modified θ projection method is proposed; subsequently, a master curve for Alloy 690 SG material is also proposed to optimize the creep model parameters, θi (i = 1-5). To adapt the implicit creep scheme to the finite element code, a partial derivative of incremental creep with respect to the stress is necessary. Accordingly, creep model parameters with a strictly linear relationship with the stress and temperature were proposed. The effectiveness of the model was validated using a commercial finite element analysis software. The creep model can be applied to evaluate the creep rupture behavior of SG tubes in nuclear power plants.
Keywords
Creep; Theta projection method; Alloy 690; Creep strain model; Steam generator tube;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Calvin Stewart, P. Ali Gordon, Strain and Damage-Based Analytical Methods To Determine The Kachanov-Rabotnov Tertiary Creep-Damage Constants, Int. J. Dam. Mech. 21 (8) (2012) 1186-1201.   DOI
2 S. Majumdar, W.J. Shack, D.R. Diercks, K. Mruk, J. Franklin, L. Knoblich, Failure behavior of internally pressurized flawed and unflawed steam generator tubing at high temperatures-experiments and comparison with model predictions, NUREG/CR-6575 (1998).
3 S. Majumdar, Prediction of structural integrity of steam generator tubes under severe accident conditions, Nucl. Eng. Des. 194 (1999) 31-55.   DOI
4 M.S. Haque, C.M. Stewart, Comparative analysis of the sin-hyperbolic and Kachanov-Rabotnov creep-damage models, Int. J. Pres. Ves. Pip. 171 (2019) 1-9.   DOI
5 C. Fu, Y. Chen, X. Yuan, S. Tin, S. Antonov, K. Yagi, Q. Feng, A modified θ projection model for constant load creep curves-I. Introduction of the model, J. Mater. Sci. Technol. 35 (2019) 223-230.   DOI
6 D.L. May, A.P. Gordon, The application of the Norton-Bailey law for creep prediction through power law regression, Proc. ASME Turbo Expo 2013 (2013). GT2013-96008.
7 B. Derby, M.F. Ashby, Power-laws and A-n correlation in creep, Scripta Metall. 18 (1984) 1079-1084.   DOI
8 B.S. Lee, J.M. Kim, J.Y. Kwon, K.J. Choi, M.C. Kim, A practical power law creep modeling of alloy 690 SG tube materials, Nucl. Eng. Technol. 53 (9) (2021) 2953-2959.   DOI
9 R.W. Evans, I. Beden, B. Wilshire, On Creep and Fracture of Engineering Materials and Structures, Pineridge Press, Swansea, 1984, p. 1277.
10 C. Fu, Y. Chen, X. Yuan, S. Tin, S. Antonov, K. Yagi, Q. Feng, A modified θ projection model for constant load creep curves-II. Application of creep life prediction, J. Mater. Sci. Technol. 35 (2019) 687-694.   DOI
11 Dassault, ABAQUS Version 6.14. User's Manual, Dassault Systems Simulia, 2018.
12 J.M. Montes, F.G. Cuevas, J. Cintas, New creep law, Mater. Sci. Technol. 28 (2012) 377-379.   DOI
13 K.J. Karwoski, G.L. Maker, M.G. Yoder, U.S. Operating Experience with Thermally Treated Alloy 690 Steam Generator Tubes, U.S., NRC, 2007. NUREG-1841.
14 S. Sancaktar, M. Salay, R. Lyengar, A. Azarm, S. Majumdar, Consequential SGTR analysis for Westinghouse and combustion engineering plants with thermally treated alloy, Steam Generat. Tubes 600 and 690 (2016). NUREG-2195.
15 Idaho National Engineering Laboratory, Risk Assessment of Severe Accident-Induced Steam Generator Tube Rupture, 1998. NUREG-1570.
16 P. Yu, W. Ma, A modified theta projection model for creep behavior of RPV steel 16MND5, J. Mater. Sci. Technol. 47 (2020) 231-242.   DOI
17 V.S. Srinivasan, B.K. Hhoudhary, M.D. Mathew, T. Jayakumar, Creep behaviour of 9Cr-1Mo ferritic steel using theta-projection approach and evolution of a damage criterion, Trans. SMiRT 21 (2011). Div-I, Paper, ID# 779.
18 P.E. MacDonald, V.N. Shah, L.W. Ward, P.G. Elliso, Steam Generator Tube Failures, U.S. NRC, 1996. NUREG/CR-6365.
19 ECCC, Recommendations and guidance for the assessment of creep strain and creep strength data, ECCC Recommend. 5 (2003) 38.
20 R.W. Evans, Statistical scatter and variability of creep property estimates in θ projection method, Mater. Sci. Technol. 5 (1989) 699-707.   DOI
21 W. Harrison, Z. Abdallah, M. Whittaker, A model for creep and creep damage in the γ-titanium aluminide Ti-45Al-2Mn-2Nb, Materials 7 (2014) 2194-2209.   DOI