• Title/Summary/Keyword: Min-Design Method

Search Result 2,844, Processing Time 0.034 seconds

Development of Performance Based Design Method based on Application of Fragility Method (Fragility Method를 적용한 성능기반형설계기법의 개발)

  • Kim, Jang-Ho;Li, Jing;Park, Jeong-Ho;Kim, Yun-Ho;Lee, Kyong-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.310-313
    • /
    • 2006
  • The purpose of this study is to develop Performance Based Design Method based on application of Fragility Method. Fragility Method has been used in predicting failure of structure due to seismic action, However, development of Fragility Curve based on material or construction for PBD is developed, This paper suggests that Fragility Method can be modified for PBD and can assess the performance of concrete material or construction.

  • PDF

A New Decomposition Method for Parallel Processing Multi-Level Optimization

  • Park, Dong-Hoon;Park, Hyung-Wook;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.609-618
    • /
    • 2002
  • In practical designs, most of the multidisciplinary problems have a large-size and complicate design system. Since multidisciplinary problems have hundreds of analyses and thousands of variables, the grouping of analyses and the order of the analyses in the group affect the speed of the total design cycle. Therefore, it is very important to reorder and regroup the original design processes in order to minimize the total computational cost by decomposing large multidisciplinary problems into several multidisciplinary analysis subsystems (MDASS) and by processing them in parallel. In this study, a new decomposition method is proposed for parallel processing of multidisciplinary design optimization, such as collaborative optimization (CO) and individual discipline feasible (IDF) method. Numerical results for two example problems are presented to show the feasibility of the proposed method.

Topology Design Optimization of Nonlinear Thermo-elastic Structures (비선형 열탄성 연성구조의 위상 최적설계)

  • Moon, Min-Yeong;Jang, Hong-Lae;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.535-541
    • /
    • 2010
  • In this paper, we have derived a continuum-based adjoint design sensitivity of general performance functionals with respect to Young' modulus and heat conduction coefficient for steady-state nonlinear thermoelastic problems. An adjoint equation for temperature and displacement fields is defined for the efficient computation of the coupled field design sensitivity. Through numerical examples, we investigated the mesh dependency of the topology optimization method in the thermoelastic problems. Also, comparing the dominant loading cases of thermal and mechanical ones, the loading dependency of topology design optimization in coupled multi-physics problems is investigated.

Extraction of Threshold Voltage for Junctionless Double Gate MOSFET (무접합 이중 게이트 MOSFET에서 문턱전압 추출)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.146-151
    • /
    • 2018
  • In this study, we compared the threshold-voltage extraction methods of accumulation-type JLDG (junctionless double-gate) MOSFETs (metal-oxide semiconductor field-effect transistors). Threshold voltage is the most basic element of transistor design; therefore, accurate threshold-voltage extraction is the most important factor in integrated-circuit design. For this purpose, analytical potential distributions were obtained and diffusion-drift current equations for these potential distributions were used. There are the ${\phi}_{min}$ method, based on the physical concept; the linear extrapolation method; and the second and third derivative method from the $I_d-V_g$ relation. We observed that the threshold-voltages extracted using the maximum value of TD (third derivatives) and the ${\phi}_{min}$ method were the most reasonable in JLDG MOSFETs. In the case of 20 nm channel length or more, similar results were obtained for other methods, except for the linear extrapolation method. However, when the channel length is below 20 nm, only the ${\phi}_{min}$ method and the TD method reflected the short-channel effect.

Tonpilz Type Underwater Acoustic Transducers Design using Finite Element Method (유한요소법을 이용한 Tonpilz형 수중 음향 트랜스듀서 설계)

  • Cho, Yo-Han;Kim, Jung-Suk;Lee, Jeong-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.247-250
    • /
    • 2005
  • Underwater acoustic transducers are widely used for SONAR application, whose important design parameters are shapes, materials, dimensions and supporting structures. Practical design method of transducers consists of manufacturing, experiments and modifications so that It requires much time and expenses. In this study, an analytical method was developed for the Tonpilz type transducers using the commercial finite element analysis code ATILA which can solve the electro-mechanical coupling Problems. A finite element model was established including the transducer elements such as ceramic stack, head mass, tall mass, tensile bolt, and molding layers. The proposed model was verified and modified by comparing the in-air and in-water test results of prototypes. The developed analysis method will be effectively used for the sensitivity analysis of design parameters in transducer design process.

  • PDF

An Efficient Dynamic Response Optimization Using the Design Sensitivities Approximated Within the Estimate Confidence Radius

  • Park, Dong-Hoon;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1143-1155
    • /
    • 2001
  • In order to reduce the expensive CPU time for design sensitivity analysis in dynamic response optimization, this study introduces the design sensitivities approximated within estimated confidence radius in dynamic response optimization with ALM method. The confidence radius is estimated by the linear approximation with Hessian of quasi-Newton formula and qualifies the approximate gradient to be validly used during optimization process. In this study, if the design changes between consecutive iterations are within the estimated confidence radius, then the approximate gradients are accepted. Otherwise, the exact gradients are used such as analytical or finite differenced gradients. This hybrid design sensitivity analysis method is embedded in an in-house ALM based dynamic response optimizer, which solves three typical dynamic response optimization problems and one practical design problem for a tracked vehicle suspension system. The optimization results are compared with those of the conventional method that uses only exact gradients throughout optimization process. These comparisons show that the hybrid method is more efficient than the conventional method. Especially, in the tracked vehicle suspension system design, the proposed method yields 14 percent reduction of the total CPU time and the number of analyses than the conventional method, while giving similar optimum values.

  • PDF

Robust Optimal Design Method Using Two-Point Diagonal Quadratic Approximation and Statistical Constraints (이점 대각 이차 근사화 기법과 통계적 제한조건을 적용한 강건 최적설계 기법)

  • Kwon, Yong-Sam;Kim, Min-Soo;Kim, Jong-Rip;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2483-2491
    • /
    • 2002
  • This study presents an efficient method for robust optimal design. In order to avoid the excessive evaluations of the exact performance functions, two-point diagonal quadratic approximation method is employed for approximating them during optimization process. This approximation method is one of the two point approximation methods. Therefore, the second order sensitivity information of the approximated performance functions are calculated by an analytical method. As a result, this enables one to avoid the expensive evaluations of the exact $2^{nd}$ derivatives of the performance functions unlike the conventional robust optimal design methods based on the gradient information. Finally, in order to show the numerical performance of the proposed method, one mathematical problem and two mechanical design problems are solved and their results are compared with those of the conventional methods.

A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge (교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구)

  • Park, Yeon-Soo;Lee, Byung-Geun;Kim, Eung-Rok;Suh, Byung-Chul;Park, Sun-Joon;Choi, Sun-Min
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

Topology Design of a Structure with a Specified Eigenfrequency (주어진 고유주파수를 갖는 구조물의 위상최적설계)

  • Lee, Jong-Hwan;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1210-1216
    • /
    • 2003
  • Topology optimization is applied to determine the layout of a structural component with a specified frequency by minimizing the difference between the specified structural frequency and a given frequency. The homogenization design method is employed and the topology design problem is solved by the optimality criteria method. The value of a weighting factor in the optimality criteria plays an important role in this topology design problem. The modified optimality criteria method approximated by using the binomial expansion is suggested to determine the suitable value of the weighting factor, which makes convergence stable. If a given frequency is set as an excited frequency, it is possible to avoid resonance by moving away the specified structural frequency from the given frequency. The results of several test problems are compared with previous works and show the validity of the proposed algorithm.

The Design of Iron Loss Minimization of 600W IPMSM by Quasi-newton Method (Quasi-Newton Method에 의한 600W IPMSM의 철손 최소화 설계)

  • Baek, Sung-min;Cho, Gyu-won;Kim, Gyu-tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1053-1058
    • /
    • 2017
  • In this paper, the design of iron loss minimization of 600W was performed by using Quasi-Newton method. Stator shoe, the width of stator teeth and yoke, and the length of d-axis flux path were selected as design parameters, and the output characteristics according to each design variable were considered. The objective function was set to minimize iron loss. Using the Quasi-Newton method, the variables converged to the target value while changing simultaneously and multiple times. As the algorithm advanced optimization, the correlation with the behavior of each variable was compared and analyzed.