• Title/Summary/Keyword: Millimeter-wave device

Search Result 65, Processing Time 0.023 seconds

Studies on the millimeter-wave Passive Imaging System II (밀리미터파 수동 이미징 시스템 연구 II)

  • Jung, Min-Kyoo;Chae, Yeon-Sik;Kim, Soon-Koo;Yoo, Jin-Seob;Koji, Mizuno;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.105-110
    • /
    • 2007
  • We have built the millimeter-wave passive imaging system with a lens and mechanical scan antenna. The lens was designed based on optical theory in order to focus millimeter-wane. A full image was taken from image points scanned by Placing antenna at the representative focal plane selectively. An integrated antenna array device for low-loss and low-noise with the array of 4 by 1, where components such as antenna, balun, MMIC, and detector were assembled on a sin91e substrate, and a fermi tapered slot antenna with high-gain and low-side lobe were used for elements of this millimeter-wave passive imaging system. Two dimensional antenna arrangement on focal plane was achieved in this imaging system.

Design and Fabrication of the 0.1${\mu}{\textrm}{m}$ Г-Shaped Gate PHEMT`s for Millimeter-Waves

  • Lee, Seong-Dae;Kim, Sung-Chan;Lee, Bok-Hyoung;Sul, Woo-Suk;Lim, Byeong-Ok;Dan-An;Yoon, yong-soon;kim, Sam-Dong;Shin, Dong-Hoon;Rhee, Jin-koo
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2001
  • We studied the fabrication of GaAs-based pseudomorphic high electron mobility transistors(PHEMT`s) for the purpose of millimeter- wave applications. To fabricate the high performance GaAs-based PHEMT`s, we performed the simulation to analyze the designed epitaxial-structures. Each unit processes, such as 0.1 m$\mu$$\Gamma$-gate lithography, silicon nitride passivation and air-bridge process were developed to achieve high performance device characteristics. The DC characteristics of the PHEMT`s were measured at a 70 $\mu$m unit gate width of 2 gate fingers, and showed a good pinch-off property ($V_p$= -1.75 V) and a drain-source saturation current density ($I_{dss}$) of 450 mA/mm. Maximum extrinsic transconductance $(g_m)$ was 363.6 mS/mm at $V_{gs}$ = -0.7 V, $V_{ds}$ = 1.5 V, and $I_{ds}$ =0.5 $I_{dss}$. The RF measurements were performed in the frequency range of 1.0~50 GHz. For this measurement, the drain and gate voltage were 1.5 V and -0.7 V, respectively. At 50 GHz, 9.2 dB of maximum stable gain (MSG) and 3.2 dB of $S_{21}$ gain were obtained, respectively. A current gain cut-off frequency $(f_T)$ of 106 GHz and a maximum frequency of oscillation $(f_{max})$ of 160 GHz were achieved from the fabricated PHEMT\\`s of 0.1 m$\mu$ gate length.h.

  • PDF

Development of a Signal Acquisition Device to Verify the Applicability of Millimeter Wave Tracking Radar Transmission and Receiving Components (밀리미터파 추적레이더 송·수신 구성품의 적용성 검증을 위한 신호획득장치 개발)

  • Jinkyu Choi;Youngcheol Shin;Soonil Hong;Han-Chun Ryu;Hongrak Kim;Jihan Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.185-190
    • /
    • 2023
  • Recently, tracking radar requires the development of millimeter wave tracking radar to acquire target information with high resolution in various environments. The development of millimeter wave tracking radar requires the development of transmission and receiving components that can be applied to the millimeter wave tracking radar, as well as verification of the applicability of the tracking radar. In order to verify the applicability of the developed transmitting and receiving components, it is necessary to develop a signal acquisition device that can control the transmitting and receiving components using the operating concept of a tracking radar and check the status of the received signal. In this paper, we implemented a signal acquisition device that can confirm the applicability of components developed for millimeter wave tracking radar. The signal acquisition device was designed to process in real time the OOOMHz center frequency and OOMHz bandwidth signals input from 4 channels to verify the received signal. In addition, component control applying the tracking radar operation concept was designed to be controlled by communication such as RS422, RS232, and SPI and generation of control signals for the transmission and receiving time. Lastly, the implemented signal acquisition device was verified through a signal acquisition device performance test.

Modification of CPW Pad Design for High fmax InGaAs/InAlAs Metamorphic High Electron Mobility Transistors (높은 $f_{max}$ 를 갖는 InGaAs/InAlAs MHEMT 의 Pad 설계)

  • Choi, Seok-Gyu;Lee, Bok-Hyung;Lee, Mun-Kyo;Kim, Sam-Dong;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.599-602
    • /
    • 2005
  • In this paper, we have performed a study that modifies the CPW Pad configurations to improve an $f_{max}$ characteristic of metamorphic HEMT. To analyze the CPW Pad structures of MHEMT, we use the ADS momentum simulator developed by $Agilent^{TM}$. Comparing the employed structure (G/W = 40/100 m), the optimized structure (G/W = 20/25 m) of CPW MHEMT shows the increased $S_{21}$ by 2.5 dB, which is one of the dominant parameters influencing the $f_{max}$ of MHEMT. To compare the performances of optimized MHEMT with the employed MHEMT, DC and RF characteristics of the fabricated MHEMT were measured. In the case of optimized CPW MHEMT, the measured saturated drain current density and transconductance $(g_m)$ were 693 mA/mm and 647 mS/mm, respectively. RF measurements were performed in a frequency range of $0.1{\sim}110$ GHz. A high $S_{21}$ gain of 5.5 dB is shown at a millimeter-wave frequency of 110 GHz. Two kinds of RF gains, $h_{21}$ and maximum available gain (MAG), versus the frequency, and a cut-off frequency ($f_t$) of ${\sim}154$ GHz and a maximum frequency of oscillation ($f_{max}$) of ${\sim}358$ GHz are obtained, respectively, from the extrapolation of the RF gains for a device biased at a peak transconductance. An optimized CPW MHEMT structure is one of the first reports among fabricated 0.1 m gate length MHEMTs.

  • PDF

Millimeter Wave MMIC Low Noise Amplifiers Using a 0.15 ${\mu}m$ Commercial pHEMT Process

  • Jang, Byung-Jun;Yom, In-Bok;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.190-196
    • /
    • 2002
  • This paper presents millimeter wave monolithic microwave integrated circuit (MMIC) low noise amplifiers using a $0.15{\mu}m$ commercial pHEMT process. After carefully investigating design considerations for millimeter-wave applications, with emphasis on the active device model and electomagnetic (EM) simulation, we designed two single-ended low noise amplifiers, one for Q-band and one for V-band. The Q-band two stage amplifier showed an average noise figure of 2.2 dB with an 18.3 dB average gain at 44 GHz. The V-band two stage amplifier showed an average noise figure of 2.9 dB with a 14.7 dB average gain at 65 GHz. Our design technique and model demonstrates good agreement between measured and predicted results. Compared with the published data, this work also presents state-of-the-art performance in terms of the gain and noise figure.

  • PDF

A Study on the Calibration of GaAs-based 0.1-$\mu\textrm{m}$ $\Gamma$-gate MHEMT DC/RF Characteristics for the Development and Fabrication of over-100-GHz Millimeter-wave HEMT devices (100GHz 이상의 밀리미터파 HEMT 소 제작 및 개발을 위한 GaAs기반 0.1$\mu\textrm{m}$ $\Gamma$-게이트MHEMT의 DC/RF 특성에 대한 calibration 연구)

  • 손명식;이복형;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.751-754
    • /
    • 2003
  • Metamorphic HEMTs (MHEMTs) have emerged as excellent challenges for the design and fabrication of high-speed HEMTs for millimeter-wave applications. Some of improvements result from improved mobility and larger conduction band discontinuity in the channel, leading to more efficient modulation doping, better confinement, and better device performance compared with pseudomorphic HEMTs. We have studied the calibration on the DC and RF characteristics of the MHEMT device using I $n_{0.53}$G $a_{0.47}$As/I $n_{0.52}$A1$_{0.48}$As modulation-doped heterostructure on the GaAs wafer. For the optimized device performance simulation, we calibrated the device performance of 0.1-${\mu}{\textrm}{m}$ $\Gamma$-gate MHEMT fabricated in our research center using the 2D ISE-DESSIS device simulator. With this calibrated parameter set, we have obtained very good reproducibility. The device simulation on the DC and RF characteristics exhibits good reproducibility for our 0.1-${\mu}{\textrm}{m}$ -gate MHEMT device compared with the measurements. We expect that our calibration result can help design over-100-GHz MHEMT devices for better device performance.ormance.

  • PDF

Calibration Study on the DC Characteristics of GaAs-based $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ Heterostructure Metamorphic HEMTs (GaAs 기반 $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ 이종접합 구조를 갖는 MHEMT 소자의 DC 특성에 대한 calibration 연구)

  • Son, Myung-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.63-73
    • /
    • 2011
  • Metamorphic HEMTs (MHEMTs) have emerged as excellent challenges for the design and fabrication of high-speed HEMTs for millimeter-wave applications. Some of improvements result from improved mobility and larger conduction band discontinuity in the channel, leading to more efficient modulation doping, better confinement, and better device performance compared with conventional pseudomorphic HEMTs (PHEMTs). For the optimized device design and development, we have performed the calibration on the DC characteristics of our fabricated 0.1 ${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}$As heterostructure on the GaAs wafer using the hydrodynamic transport model of a commercial 2D ISE-DESSIS device simulator. The well-calibrated device simulation shows very good agreement with the DC characteristic of the 0.1 ${\mu}m$ ${\Gamma}$-gate MHEMT device. We expect that our calibration result can help design over-100-GHz MHEMT devices for better device performance.

Study of Composite channel Structure of Metamorphic HEMT for the Improved Device Characteristics (기존의 MHEMT와 InP 합성 채널 MHEMT의 소자의 항복 특성 분석 및 비교 연구)

  • Choi, Seok-Gyu;Baek, Yong-Hyun;Han, Min;Bang, Seok-Ho;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, we have performed the channel modification of the conventional MHEMT (metamorphic high electron mobility transistor) to improve the breakdown characteristics. The Modified channel consists of the InxGal-xAs channel and the InP sub channel instead of the InxGa1-xAs channel. Since InP has the lower impact ionization coefficient in comparison with In0.53Ga0.47As, we have adopted the InP-composite channel in the modified MHEMT. We have investigated the breakdown mechanism and the RF characteristics for the conventional and the InP- composite channel MHEMTs. From the measurement results, we have obtained the enhanced on and off-state breakdown voltages of 2.4 and 5.7 V, respectively. Also, the increased RF characteristics have brought about the decreased output conductance for the InP-composite channel MHEMT. The cut-off frequency (fT) and the maximum oscillation frequency (fmax) for the InP-composite Channel MHEMT were 160 GHz and 230 GHz, respectively. It has been shown that the InP-composite channel MHEMT has the potential applications for the millimeter wave power device.

Research on Broadband Millimeter-wave Cascode Amplifier using MHEMT (MHEMT를 이용한 광대역 특성의 밀리미터파 Cascode 증폭기 연구)

  • Baek, Yong-Hyun;Lee, Sang-Jin;Baek, Tae-Jong;Choi, Seok-Gyu;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, millimeter-wave broadband MHEMT (Metamorphic High Electron Mobility Transistor) cascode amplifiers were designed and fabricated. The $0.1{\mu}m$ InGaAs/InAlAs/GaAs MHEMT was fabricated for cascode amplifiers. The DC characteristics of MHEMT are 670 mA/mm of drain current density, 588 mS/mm of maximum transconductance. The current gain cut-off frequency($f_T$) is 139 GHz and the maximum oscillation frequency($f_{max}$) is 266 GHz. To prevent oscillation of the designed cascode amplifiers, a parallel resistor and capacitor were connected to the drain of common gate device. By using the CPW (Coplanar Waveguide) transmission line, the cascode amplifier was designed and matched for the broadband characteristics. The designed amplifier was fabricated by the MHEMT MMIC process that was developed through this research. As the results of measurement, the amplifier was obtained 3 dB bandwidth of 50.37 GHz between 20.76 to 71.13 GHz. Also, this amplifier represents the S21 gain with the average 7.07 dB gain in bandwidth and the maximum gain of 10.3 dB at 30 GHz.

Development of Millimeter wave Radar Front-end for Automobile (차량용 밀리파 레이더 프론트엔드의 개발)

  • Shin, Cheon-Woo;Lee, Kyu-Han;Park, Hong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.53-56
    • /
    • 2001
  • This paper has been developed a millimeter-wave radar to prevent car collision. This system needs to progress the problem as follows; (1) Increase of traffic accidents causing damage and injuries due to the increased number of motor vehicles and long distance driving, (2) Need for a device to help drivers who are in trouble due to bad weather conditions. (3) Need for a millimeter-wave radar as obstacles which need to be detected are small. This system is composited with some major technologies, Narrow beams to recognize obstacles or other objects, One-side circuit technology to prevent interference between electric waves, and Parts designed for radar products which are able to transmit millimeter - waves. The system has a various a application Field, Car distance auto-control system, prevent bump collision due to unexpected stoppage of the front car or careless driving, obstacle warning system, Car following system, and industrial and military purposes system. We have a looking forward to propose to develop field tests under various road conditions and hybrid car sensor by combining with other sensors

  • PDF