• Title/Summary/Keyword: Microtensile test

Search Result 70, Processing Time 0.026 seconds

EFFECT OF REWETTING AGENT ON DENTINAL MICROTENSILE BOND STRENGTH (상아질에 적용된 재 습윤제가 미세인장 결합강도에 미치는 영향)

  • Kang, Hee-Young;Cho, Young-Gon;Kim, Jong-Uk;Park, Byung-Cheul;Yoo, Sang-Hoon;Jin, Cheul-Hee;Choi, Hee-Young;Ki, Young-Jae
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2004
  • This study investigated that the effect of rewetting agent on dentinal microtensile bond strength(${\mu}TBS$). Human molars were sectioned to expose the superficial dentin surfaces. Samples were divided into two groups according to type of adhesives-Single Bond (S) and One-Step (0)], and again subdivided into five groups by different dentin surface treatment-dry for 15s (D), blot dry (BD) or dry for 15s, and rewet with different rewetting agents [distilled water (DW), Gluma Desensitizer (GD) and Aqua-Prep (AP)] for 30s. After application of adhesive, composite resin was built up on the bonding surface. Each tooth was sectioned to obtain stick with $1\textrm{mm}^2$ cross sectional area and the ${\mu}TBS$ was determined by EZ test. In the S group, the mean ${\mu}TBS$ of GD, AP, and BD group was significantly higher than that of DW and D group (p < 0.05), In the O group, the mean, ${\mu}TBS$ of AP, GD, BD and DW group was significantly higher than that of D group (p < 0.05). The data suggested that Gluma Desensitizer and Aqua-Prep could be successfully used as rewetting agents, and Distilled water could be acceptable in aceton based adhesive system only.

Microtensile bond strength of CAD/CAM-fabricated polymer-ceramics to different adhesive resin cements

  • Sadighpour, Leyla;Geramipanah, Farideh;Ghasri, Zahra;Neshatian, Mehrnoosh
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.40.1-40.10
    • /
    • 2018
  • Objectives: This study evaluated the microtensile bond strength (${\mu}TBS$) of polymer-ceramic and indirect composite resin with 3 classes of resin cements. Materials and Methods: Two computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated polymer-ceramics (Enamic [ENA; Vita] and Lava Ultimate [LAV; 3M ESPE]) and a laboratory indirect composite resin (Gradia [GRA; GC Corp.]) were equally divided into 6 groups (n = 18) with 3 classes of resin cements: Variolink N (VAR; Vivadent), RelyX U200 (RXU; 3M ESPE), and Panavia F2 (PAN; Kuraray). The ${\mu}TBS$ values were compared between groups by 2-way analysis of variance and the post hoc Tamhane test (${\alpha}=0.05$). Results: Restorative materials and resin cements significantly influenced ${\mu}TBS$ (p < 0.05). In the GRA group, the highest ${\mu}TBS$ was found with RXU ($27.40{\pm}5.39N$) and the lowest with VAR ($13.54{\pm}6.04N$) (p < 0.05). Similar trends were observed in the ENA group. In the LAV group, the highest ${\mu}TBS$ was observed with VAR ($27.45{\pm}5.84N$) and the lowest with PAN ($10.67{\pm}4.37N$) (p < 0.05). PAN had comparable results to those of ENA and GRA, whereas the ${\mu}TBS$ values were significantly lower with LAV (p = 0.001). The highest bond strength of RXU was found with GRA ($27.40{\pm}5.39N$, p = 0.001). PAN showed the lowest ${\mu}TBS$ with LAV ($10.67{\pm}4.37N$; p < 0.001). Conclusions: When applied according to the manufacturers' recommendations, the ${\mu}TBS$ of polymer-ceramic CAD/CAM materials and indirect composites is influenced by the luting cements.

The comparison of microtensile bond strength with immediate and delayed dentin sealing (즉시 상아질 봉쇄와 지연 상아질 봉쇄에 따른 상아질 접착의 미세인장 결합강도 비교)

  • Lee, Heung-Bae;Han, Chong-Hyun;Shim, Jun-Sung;Kim, Sun-Jai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.372-380
    • /
    • 2008
  • Purpose: The purpose of this study was to evaluate the effect of various methods of dentin bonding agent application on microtensile bond strength between dentin and resin, using a 2-step etch-and-rinse dentin bonding agent. Material and methods: Twenty freshly extracted human molars were obtained and divided into 4 groups of 5 teeth. 2-step etch-and-rinse dentin bonding agent was used for all groups. The control specimens were prepared using a direct immediate bonding technique. The delayed dentin sealing (A, C) specimens were prepared using an indirect approach with delayed dentin sealing. For group A, resin was built-up on uncured dentin bonding agent, and for group C, resin was built-up on pre-cured dentin bonding agent. Preparation of the immediate dentin sealing (B) specimens also used an indirect approach with immediate dentin sealing immediately following preparation. All teeth were prepared for a microtensile bond strength test. Specimens were stored in water for 24 hours. Ten beams (1.0 ${\times}$ 1.0 ${\times}$ 11 mm) from each tooth were selected for testing. Bond strength data (MPa) were analyzed with a one-way ANOVA test, and post hoc comparison was done using the Scheffe's test. Results: The mean microtensile bond strengths of control group, B and C (DDS with pre-cure) were not statisticaaly different from each other at 32.7, 33.3, 34.2 MPa. the bond strength for group A (DDS without pre-cure), 19.5 MPa, was statistically different (P < .01) from the other 3 groups. Conclusion: When preparing teeth for indirect bonded restorations, DDS with pre-curing dentin bonding agent and IDS results in the same bond strength between dentin and resin. On the contrast, the bond strength was decreased when DDS without pre-curing dentin bonding agent was used.

THE INFLUENCE OF CAVITY CONFIGURATION ON THE MICROTENSILE BOND STRENGTH BETWEEN COMPOSITE RESIN AND DENTIN (와동의 형태가 상아질과 복합레진 사이의 미세인장결합강도에 미치는 영향)

  • Kim, Ye-Mi;Park, Jeong-Won;Lee, Chan-Young;Song, Yoon-Jung;Seo, Deok-Kyu;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.472-480
    • /
    • 2008
  • This study was conducted to evaluate the influence of the C-factor on the bond strength of a 6th generation self-etching system by measuring the microtensile bond strength of four types of restorations classified by different C-factors with an identical depth of dentin. Eighty human molars were divided into four experimental groups, each of which had a C-factor of 0.25, 2, 3 or 4. Each group was then further divided into four subgroups based on the adhesive and composite resin used. The adhesives used for this study were AQ Bond Plus (Sun Medical, Japan) and XenoIII (DENTSPLY, Germany). And composite resins used were fantasists (Sun Medical, Japan) and Ceram-X mono (DENTSPLY, Germany). The results were then analyzed using one-way ANOVA, a Tukey's test, and a Pearson's correlation test and were as follows. 1. There was no significant difference among C-factor groups with the exception of groups of Xeno III and Ceram-X mono (p<0.05). 2. There was no significant difference between any of the adhesives and composite resins in groups with C-factor 0.25, 2 and 4. 3. There was no correlation between the change in C-factor and microtensile bond strength in the Fantasista groups. It was concluded that the C-factor of cavities does not have a significant effect on the microtensile bond strength of the restorations when cavities of the same depth of dentin are restored using composite resin in conjunction with the 6th generation self-etching system.

THE EFFECT OF CONCENTRATION AND APPLICATION TIME OF HYDROGEN PEROXIDE ON THE MICROTENSILE BOND STRENGTH OF RESIN RESTORATIONS TO THE DENTIN AT DIFFERENT DEPTHS (과산화수소의 농도와 적용시간이 상아질의 깊이에 따라 레진 수복물의 미세인장결합강도에 미치는 영향)

  • Son, Jeong-Lyong;Lee, Gye-Young;Kang, Yu-Mi;Oh, Young-Taek;Lee, Kwang-Won;Kim, Tae-Gun
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.406-414
    • /
    • 2009
  • The purpose of this study was to examine the effect of hydrogen peroxide at different application time and concentrations on the microtensile bond strength of resin restorations to the deep and the pulp chamber dentin. A conventional endodontic access cavity was prepared in each tooth, and then the teeth were randomly divided into 1 control group and 4 experimental groups as follows: Group 1, non treated; Group 2, with 20% Hydrogen peroxide ($H_2O_2$); Group 3, with 10% $H_2O_2$; Group 4, with 5% $H_2O_2$; Group 5, with 2.5% $H_2O_2$; the teeth of all groups except group 1 were treated for 20, 10, and 5min. The treated teeth were filled using a Superbond C&B (Sun medical Co., Shiga, Japan). Thereafter, the specimens were stored in distilled water at $37^{\circ}C$ for 24-hours and then sectioned into the deep and the chamber dentin. The microtensile bond strength values of each group were analyzed by 3-way ANOVA and Tukey post hoc test(p < 0.05). In this study, the microtensile bond strength of the deep dentin (D1) was significantly greater than that of the pulp chamber dentin (D2) in the all groups tested. The average of microtensile bond strength was decreased as the concentration and the application time of $H_2O_2$ were increased. Analysis showed significant correlation effect not only between the depth of the dentin and the concentration of $H_2O_2$ but also between the concentration of H202 and the application time(p < 0.05), while no significant difference existed among these three variables(p > 0.05). The higher $H_2O_2$ concentration, the more opened dentinal tubules under a scanning electron microscope(SEM) examination.

MICROTENSILE BOND STRENGTH OF DENTIN BONDING ADHESIVES ON BOVINE TEETH (Bovine teeth에 대한 수 종 상아질 접착제의 미세인장결합강도)

  • Song, Eun-Ju;Kim, Jae-Moon;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.3
    • /
    • pp.420-429
    • /
    • 2007
  • The purpose of this study was to compare the micro ensile bond strength to bovine dentin of several adhesives (SM, Scotch $Bond^{TM}$ Multipurpose; SB, $Adper^{TM}$ Single Bond 2; SE, $Clearfil^{(R)}$ SE Bond; AQ, AQ $Bond^{TM}$; TS, $Clearfil^{(R)}$ tri-S Bond). Except SM and SB, they have a simplified one- or two-step application protocols in compare with the dentin adhesives conventional three-step protocols. For the microtensile bond strength test, the labial surfaces of bovine incisors were used. Following exposure of dentin layer, according to their manufacturer's directions, each dentin adhesives were applied and composite resin blocks were constructed. The teeth were sectioned for specimen and tested microtensile bond strength. Also observed the fracture mode of interface. The obtained results were as follows : 1. The microtensile bond strength values ranged from 51.34 to 24.04 MPa on dentin(in decreasing order, SE, SM, SB, AQ and TS). 2. The highest microtensile bond strength was by SE and SM on bovine dentin, and the lowest by AQ and TS. 3. SM, SB and SE showed cohesive failures and adhesive failure but AQ, TS presented almost adhesive failures. In summary, microtensile bond strengths of single-step adhesives (AQ and TS) on bovine dentin were significantly lower than those of multi-step adhesives (SM, SB and SE) (p<0.05).

  • PDF

Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems

  • Gul, Pinar;Altinok-Uygun, Latife
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.131-139
    • /
    • 2020
  • PURPOSE. The purpose of this study is to evaluate the repair bond strength of a nanohybrid resin composite to three CAD/CAM blocks using different intraoral ceramic repair systems. MATERIALS AND METHODS. Three CAD/CAM blocks (Lava Ultimate, Cerasmart, and Vitablocks Mark II) were selected for the study. Thirty-two specimens were fabricated from each block. Specimens were randomly divided into eight groups for the following different intraoral repair systems: Group 1: control group (no treatment); Group 2: 34.5% phosphoric acid etching; Group 3: CoJet System; Group 4: Z-Prime Plus System; Group 5: GC Repair System; Group 6: Cimara System; Group 7: Porcelain Repair System; and Group 8: Clearfil Repair System. Then, nanohybrid resin composite (Tetric Evo Ceram) was packed onto treated blocks surfaces. The specimens were thermocycled before application of repair systems and after application of composite resin. After second thermal cycling, blocks were cut into bars (1 × 1 × 12 ㎣) for microtensile bond strength tests. Data were analyzed using two-way ANOVA and Tukey's HSD test (α=.05). RESULTS. Cimara System, Porcelain Repair, and Clearfil Repair systems significantly increased the bond strength of nanohybrid resin composite to all CAD/CAM blocks when compared with the other tested repair systems (P<.05). In terms of CAD/CAM blocks, the lowest values were observed in Vitablocks Mark II groups (P<.05). CONCLUSION. All repair systems used in the study exhibited clinically acceptable bond strength and can be recommended for clinical use.

MICROTENSILE BOND STRENGTH ACCORDING TO DIFFERENT DENTIN WALL POSITIONS AND CURING LIGHTS IN CLASS I CAVITY OF PRIMARY MOLAR (유구치 I급 와동에서 와동벽 위치와 중합광원에 따른 Microtensile Bond Strength 비교 연구)

  • Lee, Hyeon-Heon;Jang, Chul-Ho;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.62-72
    • /
    • 2007
  • The purpose of present study was to determine whether different kinds of curing lights can alter microtensile bond strength(MTBS) of class I cavity pulpal and axial wall specimens in primary molar. Thirty clean mandibular 2nd primary molar's occlusal enamel were removed and class I cavity, size of $2{\times}4{\times}2mm$ was prepared. Dentin bonding agent was applied according to manufacturer's manual. Each group was cured with Halogen Curing Unit, Plasma Curing Unit and LED Curing Unit. Composite resin was bulk filled and photo cured with same curing unit. MTBS specimens which size is $0.7{\times}0.7{\times}4mm$ were prepared with low speed saw. Specimens were coded by their curing lights and wall positions (Halogen - Axial wall group, Halogen - Pulpal wall group, Plasma - Axial wall group, Plasma - Pulpal wall group, LED - Axial wall group, LED - Pulpal walt group). MTBS were tested at 1 mm/min cross Head speed by Universal Testing Machine. Fractured surface and bonding surface was observed with SEM. T-test between axial and pulpal specimens in each curing lights, one-way ANOVA among different curing light specimens in each wall positions were done. Weibull distribution analysis was done. The results were as follows : Mean MTBS of pulpal wall specimens were significantly greater than that of axial wall specimens at each curing units(p<.05). There was no significant difference in the MTBS among three curing units at axial wall and pulpal wall. In Weibull distribution, pulpal wall specimens were more homogeneous than axial wall specimens.

  • PDF

THE EFFECT OF DIFFERENT CURING MODES ON COMPOSITE RESIN/DENTIN BOND STRENGTH IN CLASS ICAVITIES (1급 와동에서 상아질과 복합레진의 결합강도에 대한 중합방법의 효과)

  • Baek, Shin-Young;Cho, Young-Gon;Song, Byeong-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.428-434
    • /
    • 2008
  • The purpose of this study was to compare the microtensile bond strength in Class I cavities associated with different light curing modes of same light energy density. Occlusal enamel was removed to expose a flat dentin surface and twenty box-shaped Class I cavities were prepared in dentin. Single Bond (3M Dental product) was applied and Z 250 was inserted using bulk technique. The composite was light-cured using one of four techniques, pulse delay (PD group), soft-start (SS group), pulse cure (PC group) and standard continuous cure (CC group). The light-curing unit capable of adjusting time and intensity (VIP, Bisco Dental product) was selected and the light energy density for all curing modes was fixed at $16J/cm^2$. After storage for 24 hours, specimens were sectioned into beams with a rectangular cross-sectional area of approximately $1mm^2$ Microtensile bond strength $({\mu}TBS)$ test was per- formed using a univel·sal testing machine (EZ Test, Shimadzu Co.). The results were analyzed using oneway ANOVA and Tukey's test at significance level 0.05. The ${\mu}TBS$ of PD group and SS group was higher than that of PC group and CC group. Within the limitations of this in vitro study, modification of curing modes such as pulse delay and soft start polymerization can improve resin/dentin bond strength in Class I cavities by controlling polymerization velocity of composite resin.

EFFECT OF CHLORHEXIDINE ON MICROTENSILE BOND STRENGTH OF DENTIN BONDING SYSTEMS (Chlorhexidine 처리가 상아질 접착제의 미세인장결합강도에 미치는 영향)

  • Oh, Eun-Hwa;Choi, Kyoung-Kyu;Kim, Jong-Ryul;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.148-161
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of chlorhexidine (CHX) on microtensile bond strength (${\mu}TBS$) of dentin bonding systems. Dentin collagenolytic and gelatinolytic activities can be suppressed by protease inhibitors, indicating that MMPs (Matrix metalloproteinases) inhibition could be beneficial in the preservation of hybrid layers. Chlorhexidine (CHX) is known as an inhibitor of MMPs activity in vitro. The experiment was proceeded as follows: At first, flat occlusal surfaces were prepared on mid-coronal dentin of extracted third molars. GI (Glass Ionomer) group was treated with dentin conditioner, and then, applied with 2 % CHX. Both SM (Scotchbond Multipurpose) and SB (Single Bond) group were applied with CHX after acid-etched with 37% phosphoric acid. TS (Clearfil Tri-S) group was applied with CHX, and then, with adhesives. Hybrid composite Z-250 and resin-modified glass ionomer Fuji-II LC was built up on experimental dentin surfaces. Half of them were subjected to 10,000 thermocycle, while the others were tested immediately. With the resulting data, statistically two-way ANOVA was performed to assess the ${\mu}TBS$ before and after thermo cycling and the effect of CHX. All statistical tests were carried out at the 95 % level of confidence. The failure mode of the testing samples was observed under a scanning electron microscopy (SEM). Within limited results, the results of this study were as follows; 1. In all experimental groups applied with 2 % chlorhexidine, the microtensile bond strength increased, and thermo cycling decreased the micro tensile bond strength (P > 0.05). 2. Compared to the thermocycling groups without chlorhexidine, those with both thermocycling and chlorhexidine showed higher microtensile bond strength, and there was significant difference especially in GI and TS groups. 3. SEM analysis of failure mode distribution revealed the adhesive failure at hybrid layer in most of the specimen. and the shift of the failure site from bottom to top of the hybrid layer with chlorhexidine groups. 2 % chlorhexidine application after acid-etching proved to preserve the durability of the hybrid layer and microtensile bond strength of dentin bonding systems.