• Title/Summary/Keyword: Microstructure analysis

Search Result 1,495, Processing Time 0.022 seconds

In-Situ SEM Observation and DIC Strain Analysis for Deformation and Cracking of Hot-Dip ZnMgAl Alloy Coating

  • Naoki Takata;Hiroki Yokoi;Dasom Kim;Asuka Suzuki;Makoto Kobashi
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.113-120
    • /
    • 2024
  • An attempt was made to apply digital image correlation (DIC) strain analysis to in-situ scanning electron microscopy (SEM) observations of bending deformation to quantify local strain distribution inside a ZnMgAl-alloy coating in deformation. Interstitial-free steel sheets were hot-dipped in a Zn-3Mg-6Al (mass%) alloy melt at 400 ℃ for 2 s. The specimens were deformed using a miniature-sized 4-point bending test machine inside the SEM chamber. The observed in situ SEM images were used for DIC strain analysis. The hot-dip ZnMgAl-alloy coating exhibited a solidification microstructure composed of a three-phase eutectic of fine Al (fcc), Zn (hcp), and Zn2Mg phases surrounding the primary solidified Al phases. The relatively coarsened Zn2Mg phases were locally observed inside the ZnMgAl-alloy coating. The DIC strain analysis revealed that the strain was localized in the primary solidified Al phases and fine eutectic microstructure around the Zn2Mg phase. The results indicated high deformability of the multi-phase microstructure of the ZnMgAl-alloy coating.

Microstructure and Varistor Properties of ZPCCAE Ceramics with Erbium

  • Nahm, Choon-Woo;Heo, Jae-Seok;Lee, Geun-Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.213-216
    • /
    • 2014
  • The microstructure and varistor properties of ZPCCAE ($ZnO-Pr_6O_{11}-CoO-Cr_2O_3-Al_2O_3-Er_2O_3$) ceramics were investigated with different erbium amounts. Analysis of the microstructure indicated that the ceramics consisted of ZnO grains as a bulk phase, and intergranular layers (mixture of $Pr_6O_{11}$ and $Er_2O_3$) as a minor secondary phase. With the increase of the doped erbium amount, the densities of sintered pellets increased from 5.63 to $5.82g/cm^3$, and the average grain size decreased from 9.0 to $5.7{\mu}m$. The increase of the doped erbium amount increased the breakdown field from 2,649 to 5,074 V/cm, and the nonlinear coefficient from 27.6 to 39.1. It was found that in the range of 0.25 to 0.5 mol%, the doped erbium had little effect on the microstructure and electrical properties.

Evaluation of Homogeneous Ultra-fine Grain Refinements via Equal Channel Angler Pressing Process (등통로각압축공정을 통한 결정립의 균질한 초미세립화에 대한 고찰)

  • Kim, W.;Lee, H.H.;Seo, S.J.;Lee, J.K.;Yoon, T.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.222-226
    • /
    • 2018
  • Severe plastic deformation (SPD) is a promising method for drastically enhancing the mechanical properties of the materials by grain refinement of metallic materials. However, inhomogeneous deformation during the SPD process results in the inhomogeneous microstructure of the SPD-processed material. We manufactured cylindrical copper specimens of 42 mm in diameter with ultrafine grains (UFG) using an equal channel angular pressing (ECAP) to figure out the relationship between homogeneous microstructure and the number of the processing passes. Two specimens, which are ECAP-processed 4 times (4pass) and 6 times (6pass) each with Route Bc, are prepared for comparison of mechanical properties and microstructure. The results show that the mechanical properties of the two specimens (4pass and 6pass) are similar. Moreover, both the specimens show highly enhanced mechanical properties. The 4pass specimen, however, shows inhomogeneity in hardness distribution, while the 6pass specimen shows a homogeneous distribution. Microstructure analysis reveals that the 4pass specimen has an inhomogeneous microstructure with incompletely refined grain structure. This inhomogeneity of the 4pass specimen could be explained by the circumferential rotation during ECAP process.

Microstructure, Hardness and Tensile Properties of 600 MPa-Grade High-Strength and Seismic Resistant Reinforcing Steels (600 MPa급 고강도 일반 및 내진 철근의 미세조직, 경도와 인장 특성)

  • Seo, Ha-Neul;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.477-483
    • /
    • 2017
  • This present study deals with the microstructure and tensile properties of 600 MPa-grade high strength and seismic resistant reinforcing steels. The high strength reinforcing steel (SD 600) was fabricated by Tempcore processing, while the seismic resistant reinforcing steel (SD 600S) was air-cooled after hot-rolling treatment. The microstructure analysis results showed that the SD 600 steel specimen consisted of a tempered martensite and ferrite-pearlite structure after Tempcore processing, while the SD 600S steel specimen had a fully ferrite-pearlite structure. The room-temperature tensile test results indicate that, because of the enhanced solid solution and precipitation strengthening caused by relatively higher contents of C, Mn, Si and V in the SD 600S steel specimen, this specimen, with fully ferrite-pearlite structure, had yield and tensile strengths higher than those of the SD 600 specimen. On the other hand, the hardness of the SD 600 and SD 600S steel specimens changed in different ways according to location, dependent on the microstructure, ferrite grain size, and volume fraction.

EBSD Microstructural Characterisation of Oxide Scale on Low Carbon Steel

  • Birosca, S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.182-186
    • /
    • 2008
  • The microstructures of the oxide scale developed at high temperature on steels are very complex and their development depends on many factors including time, temperature, oxidation conditions and alloying elements. The classical model of an oxide scale on steel consisting of wüstite, magnetite and haematite layers, is more complicated in reality and its properties change with the factors that affect their development. An understanding of the oxide scale formation and its properties can only be achieved by careful examination of the scale microstructure. The oxide scale microstructure may be difficult to characterise by conventional techniques such as optical or standard scanning electron microscopy. An unambiguous characterisation of the scale and the correct identification of the phases within the scale are difficult unless the crystallographic structure for each phase in the scale is considered and a simultaneous microstructure-microtexture analysis is carried out. In the current study Electron Backscatter Diffraction (EBSD) has been used to investigate the microstructure of iron oxide layers grown on low carbon steels at different times and temperatures. EBSD has proved to be a powerful technique for identifying the individual phases in the oxide scale accurately. The results show that different grain shapes and sizes develop for each phase in the scale depending on time and temperature.

Effect of Process Stopping and Restarting on the Microstructure and Local Property of 316L Stainless Steel Manufactured by Selective Laser Melting Process (선택적 레이저 용융 공정을 이용한 316L 스테인리스 강의 제조 시 공정 중단 및 재 시작이 미세조직과 국부 물성에 미치는 영향)

  • Joo, Hyunjin;Woo, Jeongmin;Sohn, Yongho;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • This study investigates the effect of process stopping and restarting on the microstructure and local nanoindentation properties of 316L stainless steel manufactured via selective laser melting (SLM). We find that stopping the SLM process midway, exposing the substrate to air having an oxygen concentration of 22% or more for 12 h, and subsequently restarting the process, makes little difference to the density of the restarted area (~ 99.8%) as compared to the previously melted area of the substrate below. While the microstructure and pore distribution near the stop/restart area changes, this modified process does not induce the development of unusual features, such as an inhomogeneous microstructure or irregular pore distribution in the substrate. An analysis of the stiffness and hardness values of the nano-indented steel also reveals very little change at the joint of the stop/restart area. Further, we discuss the possible and effective follow-up actions of stopping and subsequently restarting the SLM process.

Effect of Isothermal Heat Treatment on the Microstructure and Mechanical Properties of Medium-Carbon Bainitic Steels (등온 열처리에 따른 중탄소 베이나이트강의 미세조직과 기계적 특성)

  • Lee, Ji-Min;Lee, Sang-In;Lim, Hyeon-Seok;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.522-527
    • /
    • 2018
  • This study investigates the effects of isothermal holding temperature and time on the microstructure, hardness and Charpy impact properties of medium-carbon bainitic steel specimens. Medium-carbon steel specimens with different bainitic microstructures are fabricated by varying the isothermal conditions and their microstructures are characterized using OM, SEM and EBSD analysis. Hardness and Charpy impact tests are also performed to examine the correlation of microstructure and mechanical properties. The microstructural analysis results reveal that granular bainite, bainitic ferrite, lath martensite and retained austenite form differently in the specimens. The volume fraction of granular bainite and bainitic ferrite increases as the isothermal holding temperature increases, which decreases the hardness of specimens isothermally heat-treated at $300^{\circ}C$ or higher. The specimens isothermally heat-treated at $250^{\circ}C$ exhibit the highest hardness due to the formation of lath martensite, irrespective of isothermal holding time. The Charpy impact test results indicate that increasing isothermal holding time improves the impact toughness because of the increase in volume fraction of granular bainite and bainitic ferrite, which have a relatively soft microstructure compared to lath martensite for specimens isothermally heat-treated at $250^{\circ}C$ and $300^{\circ}C$.

Surface Analysis Techniques for Studying Optical Degradation of Solar Coatings (태양에너지 박막의 광퇴화 연구를 위한 표면분석)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.55-61
    • /
    • 2009
  • This paper reviews the state-of-the art in surface analysis techniques for solar coatings. For analyzing solar coatings and interfaces, surface properties were very important factor for obtaining the information related to the optical degradation processes and microstructure. Various types of analytical techniques for chemical composition, microstructure and surface topography analysis of solar coatings were discussed. In addition, the examples of solar selective coating analysis results for applications were demonstrated. Development and analysis technique of solar coating for energy conservation was felt to be necessary at this time.

Hardening Characteristics and Microstructure Analysis of Blast Furnace Slag-Cement Mortar Replaced Alpha-calcium Sulfate Hemihydrate (알파반수석고 치환 고로슬래그 시멘트 모르타르의 경화특성 및 미세구조 분석)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Yoon, Min-Ho;Lee, Sang-Kyu;Seo, Won-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.18-19
    • /
    • 2017
  • In this study, hardening characteristics and microstructure of blast furnace slag-cement mortar replaced alpha-calcium sulfate hemihydrate were analyzed. As a result of replacing alpha-calcium sulfate hemihydrate with 0, 10, 20, 30%, it was confirmed that the initial and final setting times are faster than that of blast furnace slag-cement mortar. The compressive strength of the specimens containing alpha-calcium sulfate hemihydrate decreased in the range of 42 ~ 76% at age 28 days compared with blast furnace slag-cement mortar. In the case of replacing the alpha-calcium sulfate hemihydrate, the shrinkage did not occur more rapidly than the cement mortar, but the slope of the strain curve showed a linear behavior. The results of scanning electron microscopy images analysis showed that the formation of ettringite was increased at alpha-calcium sulfate hemihydrate replaced mortar.

  • PDF

Correlation study on microstructure and mechanical properties of rice husk ash-Sodium aluminate geopolymer pastes

  • Singh, N. Shyamananda;Thokchom, Suresh;Debbarma, Rama
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.