Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.9.477

Microstructure, Hardness and Tensile Properties of 600 MPa-Grade High-Strength and Seismic Resistant Reinforcing Steels  

Seo, Ha-Neul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Sang-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.27, no.9, 2017 , pp. 477-483 More about this Journal
Abstract
This present study deals with the microstructure and tensile properties of 600 MPa-grade high strength and seismic resistant reinforcing steels. The high strength reinforcing steel (SD 600) was fabricated by Tempcore processing, while the seismic resistant reinforcing steel (SD 600S) was air-cooled after hot-rolling treatment. The microstructure analysis results showed that the SD 600 steel specimen consisted of a tempered martensite and ferrite-pearlite structure after Tempcore processing, while the SD 600S steel specimen had a fully ferrite-pearlite structure. The room-temperature tensile test results indicate that, because of the enhanced solid solution and precipitation strengthening caused by relatively higher contents of C, Mn, Si and V in the SD 600S steel specimen, this specimen, with fully ferrite-pearlite structure, had yield and tensile strengths higher than those of the SD 600 specimen. On the other hand, the hardness of the SD 600 and SD 600S steel specimens changed in different ways according to location, dependent on the microstructure, ferrite grain size, and volume fraction.
Keywords
high strength; seismic resistant; reinforcing steels; microstructure; tensile properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. N. Ivoditov, Y. U. N. Alekseev snd N. P. Kozlov, Steel in the USSR, 15, 297 (1985).
2 P. Simon, M. Economopoulos and P. Nilles, Iron Steel Eng., 61, 53 (1984).
3 P. Simon, M. Economopoulos and P. Nilles, Metall. Plant Technol., 84, 80 (1984).
4 B. Hwang, J. H. Shim, M. G. Lee, J. Lee, J. H. Jung, B. S. Kim and S. B. Won, Korean J. Met. Mater., 54, 862 (2016).   DOI
5 K. T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Choi and C. S. Lee, Mater. Sci. Eng. A, 527, 3651 (2010).   DOI
6 D. Porter, Phase Transformations in Metals and Alloys, 3rd ed., p.536, K. E. Easterling, CRC Press, USA (2009).
7 Korean Standards Association, KS D 3504 (2016).
8 S. Y. Eum, H. M. Park and T. W. Nam, J. Korea Foundry Soc., 20, 29 (2000).
9 N. K. Park, H. S. Lee and Y. S. Chae, Korean J. Mater. Res., 17, 555 (2007).   DOI
10 C. M. Sellars and J. A. Whiteman, Met. Sci., 13, 101 (1979).   DOI
11 D. H. Ju, B. S. Jang, Y. M. Lim and J. H. Koh, J. Korea Academia-Industrial Cooperation Soc., 13, 1939 (2012).   DOI
12 R. L. Bodnar and S. S. Hansen, Metall. Mater. Trans. A, 25, 665 (1994).   DOI
13 U. Helmersson, S. Todorova, S. A. Barnett, J. E. Sundgren, L. C. Markert and J. E. Greene, J. Appl. Phys., 62, 481 (1987).   DOI
14 S. Y. Lee, H. C. Lee, C. S. Park, K. M. Woo and Y. T. Suh, J. Korea Concrete Inst., 22, 28 (2010).
15 J. R. Patel and A. R. Chaudhuri, J. Appl. Phys., 34, 2788 (1963).   DOI
16 T. Kataoka and T. Yamada, Jpn. J. Appl. Phys., 16, 1119 (1977).   DOI
17 A. H. Chokshi, A. Rosen, J. Karch and H. Gleiter, Scripta Metall., 23, 1679 (1989).   DOI
18 J. C. M. Li and Y. T. Chou, Metall. Mater. Trans., 1, 1145 (1970).   DOI
19 T. Gladman, Mater. Sci. Technol., 15, 30 (1999).   DOI
20 H. Kubo, K. Nakamura, S. Farjami and T. Maruyama, Mater. Sci. Eng. A, 378, 343 (2004).   DOI
21 D. Hull and D. J. Bacon, International Series on Materials Science and Technology, 37, 248 (1984).