DOI QR코드

DOI QR Code

Effect of Process Stopping and Restarting on the Microstructure and Local Property of 316L Stainless Steel Manufactured by Selective Laser Melting Process

선택적 레이저 용융 공정을 이용한 316L 스테인리스 강의 제조 시 공정 중단 및 재 시작이 미세조직과 국부 물성에 미치는 영향

  • Joo, Hyunjin (Material Research Institute, Inha University) ;
  • Woo, Jeongmin (Department of Materials Science and Engineering, University of Central Florida) ;
  • Sohn, Yongho (Department of Materials Science and Engineering, University of Central Florida) ;
  • Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
  • Received : 2022.02.05
  • Accepted : 2022.02.21
  • Published : 2022.02.28

Abstract

This study investigates the effect of process stopping and restarting on the microstructure and local nanoindentation properties of 316L stainless steel manufactured via selective laser melting (SLM). We find that stopping the SLM process midway, exposing the substrate to air having an oxygen concentration of 22% or more for 12 h, and subsequently restarting the process, makes little difference to the density of the restarted area (~ 99.8%) as compared to the previously melted area of the substrate below. While the microstructure and pore distribution near the stop/restart area changes, this modified process does not induce the development of unusual features, such as an inhomogeneous microstructure or irregular pore distribution in the substrate. An analysis of the stiffness and hardness values of the nano-indented steel also reveals very little change at the joint of the stop/restart area. Further, we discuss the possible and effective follow-up actions of stopping and subsequently restarting the SLM process.

Keywords

Acknowledgement

본 연구는 산업통상자원부 및 한국산업기술진흥원의 글로벌 인재 양성 사업(P0008750)의 지원으로 수행되었으며 이에 감사드립니다.

References

  1. I. Gibson, D. W. Rosen and B. Stucker: Additive Manufacturing Technologies, Springer, Cham, (2021) 63.
  2. W. E. Frazier: J. Mater. Eng. Perform., 23 (2014) 1917. https://doi.org/10.1007/s11665-014-0958-z
  3. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. Elmer and J. O. Milewskic: Prog. Mater. Sci., 92 (2018) 112. https://doi.org/10.1016/j.pmatsci.2017.10.001
  4. M. S. Hossain, J. A. Gonzalez, R. M. Hernandez, M. A. I. Shuvo and J. Mireles: Addit. Manuf., 10 (2016) 58.
  5. M. Binder, L. Kirchbichler, C. Seidel, C. Anstaett, G. Schlick and G. Reinhart: Procedia CIRP, 81 (2019) 992. https://doi.org/10.1016/j.procir.2019.03.240
  6. P. Stoll and A. Spierings: Int. J. Adv. Manuf. Technol., 103 (2019) 367. https://doi.org/10.1007/s00170-019-03560-1
  7. V. Hammond, M. Schuch and M. Bleckmann: Rapid Prototyp. J., 25 (2019) 1442. https://doi.org/10.1108/rpj-04-2018-0105
  8. I. D. Jung, M. S. Lee, J. Lee, H. Sung, J. Choe, H. J. Son, J. Yun, K.-B. Kim, M. Kim, S. W. Lee, S. Yang, S. K. Moon, K. T. Kim and J.-H. Yu: Addit. Manuf., 33 (2020) 101151. https://doi.org/10.1016/j.addma.2020.101151
  9. J. A. Cherry, H. M. Davies, S. Mehmood, N. P. Lavery, S. G. R. Brown and J. Sienz: Int. J. Adv. Manuf. Technol., 76 (2015) 869. https://doi.org/10.1007/s00170-014-6297-2
  10. D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann: Acta Mater., 117 (2016) 371. https://doi.org/10.1016/j.actamat.2016.07.019
  11. N. D. Vallejo, C. Lucas, N. Ayers, K. Graydon, H. Hyer and Y. H. Sohn: Metals, 11 (2021) 832. https://doi.org/10.3390/met11050832
  12. T. Terris, O. Andreau, P. Peyre, F. Adamski, I. Koutiri, C. Gorny and C. Dupuy: Addit. Manuf., 28 (2019) 802. https://doi.org/10.1016/j.addma.2019.05.035
  13. Q. S. Wei, X. Zhao, L. Wang, R. D. Li, J. Liu and Y. S. Shi: Adv. Mat. Res., 189 (2011) 3668.
  14. P. Mishra, P. Akerfeldt, F. Forouzan, F. Svahn, Y. Zhong, Z. J. Shen and M. L. Antti: Materials, 14 (2021) 5856. https://doi.org/10.3390/ma14195856