Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.4.213

Microstructure and Varistor Properties of ZPCCAE Ceramics with Erbium  

Nahm, Choon-Woo (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University)
Heo, Jae-Seok (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University)
Lee, Geun-Hyung (Department of Materials & Components Engineering, Dongeui University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.4, 2014 , pp. 213-216 More about this Journal
Abstract
The microstructure and varistor properties of ZPCCAE ($ZnO-Pr_6O_{11}-CoO-Cr_2O_3-Al_2O_3-Er_2O_3$) ceramics were investigated with different erbium amounts. Analysis of the microstructure indicated that the ceramics consisted of ZnO grains as a bulk phase, and intergranular layers (mixture of $Pr_6O_{11}$ and $Er_2O_3$) as a minor secondary phase. With the increase of the doped erbium amount, the densities of sintered pellets increased from 5.63 to $5.82g/cm^3$, and the average grain size decreased from 9.0 to $5.7{\mu}m$. The increase of the doped erbium amount increased the breakdown field from 2,649 to 5,074 V/cm, and the nonlinear coefficient from 27.6 to 39.1. It was found that in the range of 0.25 to 0.5 mol%, the doped erbium had little effect on the microstructure and electrical properties.
Keywords
Microstructure; Electrical properties; Erbium; ZPCCAE varistor ceramics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. W. Nahm, Materials Science and Engineering B, 137, 112 (2007).   DOI   ScienceOn
2 C. W. Nahm, Mater. Sci. Bull., 33, 239 (2010) [DOI: http://dx.doi.org/10.1007/s12034-010-0037-5].   DOI
3 J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 55, 109 (1972) [DOI: http://dx.doi.org/10.1111/j.1151-2916.1972.tb11224.x].   DOI
4 K. Mukae, Am. Ceram. Bull., 66, 1329 (1987).
5 K. Mukae, K. Tsuda, and S. Shiga, IEEE Tran. Pow. Deliv., 3, 591 (1988) [DOI: http://dx.doi.org/10.1109/61.4296].   DOI   ScienceOn
6 K. Mukae, K. Tsuda, and I. Nagasawa, Jpn. J. Appl. Phys., 16, 1361 (1977) [DOI: http://dx.doi.org/10.1143/JJAP.16.1361].   DOI
7 A. B. Alles, R. Puskas, G. Callahan, and V. L. Burdick, J. Am. Ceram. Soc., 76, 2098 (1993) [DOI: http://dx.doi.org/10.1111/j.1151-2916.1993.tb08339.x].   DOI   ScienceOn
8 Y. S. Lee, K. S. Liao, and T.-Y. Tseng, J. Am. Ceram. Soc., 79, 2379 (1996) [DOI: http://dx.doi.org/10.1111/j.1151-2916.1996.tb08986.x].   DOI   ScienceOn
9 S. Y. Chun and N. Mizutani, Mater. Sci. Eng. B, 79, 1 (2001) [DOI:http://dx.doi.org/10.1016/S0921-5107(00)00552-3].   DOI   ScienceOn
10 C. W. Nahm and H. S. Kim, Mater. Lett., 56, 379 (2002) [DOI: http://dx.doi.org/10.1016/S0167-577X(02)00490-1].   DOI   ScienceOn
11 C. W. Nahm and C. H. Park, J. Mater. Sci., 35, 3037 (2000) [DOI: http://dx.doi.org/10.1023/A:1004749214640].   DOI   ScienceOn
12 C. W. Nahm, J. Eur. Ceram. Soc., 21, 545 (2001) [DOI: http://dx.doi.org/10.1016/S0955-2219(00)00233-8].   DOI   ScienceOn
13 C. W. Nahm, Mater. Lett., 47, 182 (2001) [DOI: http://dx.doi.org/10.1016/S0167-577X(00)00262-7].   DOI   ScienceOn
14 C. W. Nahm, B. C. Shin, and B. H. Min, Mater. Chem. and Phys., 82, 157 (2003) [DOI: http://dx.doi.org/10.1016/S0254-0584(03)00213-X].   DOI   ScienceOn
15 C. W. Nahm, Solid State Commun., 127, 389 (2003) [DOI: http://dx.doi.org/10.1016/S0038-1098(03)00436-8].   DOI   ScienceOn
16 C. W. Nahm, J. Mater. Sci.: Mater. Electron., 16, 345 (2005) [DOI: http://dx.doi.org/10.1007/s10854-005-1145-7].   DOI
17 L. M. Levinson and H. R. Philipp, J. Appl. Phys., 46, 1332 (1975) [DOI: http://dx.doi.org/10.1063/1.321701].   DOI   ScienceOn
18 L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986).
19 T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990) [DOI: http://dx.doi.org/10.1111/j.1151-2916.1990.tb05232.x].   DOI
20 C. W. Nahm, C. H. Park, and H. S. Yoon, J. Mat. Sci. Lett., 19, 271 (2000) [DOI: http://dx.doi.org/10.1023/A:1006781823837   DOI   ScienceOn