• Title/Summary/Keyword: Microprocessor-based

Search Result 493, Processing Time 0.028 seconds

A Development on Universal RF based Module for Wireless Network (계측 시스템의 무선통신을 위한 RF모듈 개발)

  • Park, Suk-Hyun;Shim, Woo-Hyuk;Seo, Young-Jo;Kim, Beung-Jin;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3064-3066
    • /
    • 1999
  • The existing equipment with wire communication can expect the stability of data transmission. However, according to increasing a number of DTE (Data Terminal Equipment), wiring work becomes a heavy burden. Restriction to application about portable DTE and the lack of flexibility are another drawback of wire communication. This paper presents the design and implementation of a RF (Radio Frequency) based wireless communication system. The RF based module is designed to the multi communication between DTEs. The RF based module consists of RF circuit and microprocessor. The main properties of RF circuit are maximum 5Kbps transmission rate, maximum 90m transmission distance and 433MHz frequency band. The microprocessor rearrange the data into AHDLC(Advanced High level Data Link Control) format and then instructs RF circuits to transmit/receive the data. The RF module have a wide application field such as fire/security alarm, remote control/measurement etc..

  • PDF

Development of FPGA-based Programmable Timing Controller

  • Cho, Soung-Moon;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1016-1021
    • /
    • 2003
  • The overall size of electronic product is becoming small according to development of technology. Accordingly it is difficult to inspect these small components by human eyes. So, an automation system for inspecting them has been used. The existing system put microprocessor or Programmable Logic Controller (PLC) use. The structure of microprocessor-based controller and PLC use basically composed of memory devices such as ROM, RAM and I/O ports. Accordingly, the system is not only becomes complicated and enlarged but also higher price. In this paper, we implement FPGA-based One-chip Programmable Timing Controller for Inspecting Small components to resolve above problems and design the high performance controller by using VHDL. With fast development, the FPGA of high capacity that can have memory and PLL have been introduced. By using the high-capacity FPGA, the peripherals of the existent controller, such as memory, I/O ports can be implemented in one FPGA. By doing this, because the complicated system can be simplified, the noise and power dissipation problems can be minimized and it can have the advantage in price. Since the proposed controller is organized to have internal register, counter, and software routines for generating timing signals, users do not have to problem the details about timing signals and need to only send some values about an inspection system through an RS232C port. By selecting theses values appropriate for a given inspection system, desired timing signals can be generated.

  • PDF

Path Design Method of Mobile Robot for Obstacle Avoidance Using Ceiling- mounted Camera System and Its Implementation (천장설치형 카메라 시스템을 사용한 장애물 회피용 이동 로봇의 경로설계법과 그 구현)

  • 트란안킴;김광주;중탄람;김학경;김상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.73-82
    • /
    • 2004
  • In this paper, implementation of obstacle avoidance of a nonholonomic mobile robot in unstructured environment is introduced. To avoid obstacles, first, a reference collision-free path for the MR is generated off-line using HJB-based optimal path planning method. A controller is designed using integrator backstepping method for tracking the generated reference path. To implement the designed controller, a control system are needed and composed of camera system and PIC-based controller. The workspace is observed by a ceiling-mounted USB camera as part of an un-calibrated camera system. Thus the positional information of the MR is updated frequently and the MR can get the useful inputs for its tracking controller. The whole control system is realized by integrating a computer with PIC-based microprocessor using wireless communication: the image processing control module and path planning module serve as high level computer control while the device control serves as low level PIC microprocessor control. The simulation and experimental results show the effectiveness of the designed control system.

A Scheme for Implementing control Panel of Central control-Based Microcomputer with Microprocessor (중앙 집중 제어용 마이크로컴퓨터의 제어반을 마이크로프로세서로 구성하는 방안)

  • 박하인;진달복
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.2
    • /
    • pp.66-74
    • /
    • 1985
  • An idea is presented in this paper that control panel be implemented with a ${\mu}$-processor instead of interrupt based logic circuits. To prove that the idea is reasonable, a ${\mu}$-computer controlled traffic light control system is chosen as a model, and its control panel is imple-mented witll a f-processor. The result is that the microprocessor-based control panel performs its function very well.

  • PDF

Research on the Reliability Improvement of Automatic Fire Alarm System (자동화재탐지설비의 신뢰성 개선에 관한 연구)

  • Son, Young-Jin;Lee, Young-Il;Lee, Sang-Hyeon
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.42-49
    • /
    • 2008
  • This research is to provide a scheme for an automatic fire alarm system with higher reliability through solving problems of malfunctioning (false or missing fire alarm) and power interruption (result from frequently unwanted activation, etc) of an automatic fire alarm system. A digital control system with microprocessor-based is proposed to reduce the possibility of malfunctioning through a combinational use of heat, smoke and CO sensors. Higher reliability could be achieved by these multiple sensors based fire detection system and fire distinction algorithm. In this research, we implemented actual fire detection system and conducted fire test to verify improvement on reliability.

Design of an Embedded System for Monitoring Devices of Elders Living Alone (독거노인 모니터링 디바이스를 위한 임베디드 시스템 설계)

  • Moon, Sang-Ook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.833-835
    • /
    • 2010
  • The SPARTAN-3E development kit is equipped with an FPGA which holds 500 thousand logic gates and a bus system platform using MicroBlaze microprocessor system. This kind of embedded systems can be used to gather information from sensor nodes and send over to the main server periodically through the network gateway, using the microprocessor-based embedded system, so that edlers living alone under sensor coverage can send their moving information and can be applied to get help in the event of emergency situations. In this paper, we designed a simple embedded system based on a CPU and flash memories using such FPGAs which can be used to monitor those elderlies living alone. The developed hardware system can be directly combined with the web-based elders-living-alone monitoring system, making the system more efficient.

  • PDF

Development of an Educational System and Real Time Nonlinear Control (II) (교육용 시스템 개발과 실시간 비선형 제어(II))

  • 박성욱
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.571-576
    • /
    • 2002
  • This paper is to develop jumping ring system with three sensor arrays and to control levitated ring using dynamic neural mode. Placing an aluminum ring on the core and switching on an AC source causes the ring to jump in the air due to induced currents. The educational system is composed of 40th optical sensor array, encode circuit, 89C51 microprocessor and control board. The control board consists of power IC, and phase controller. Real time process is present to obtain a height of levitated ring for three different sensor arrays. Based on the educational system and the proposed dynamic neural mode, the height of levitation of the ring is controlled by reference signals. This paper focuses on real system controls using the dynamic neural mode with on line learning algorithm.

Implementation of Lamp Monitoring System(LMS) for Ship Based on PLM (PLM 통신기반 선박용 LMS 구현)

  • Lim, Hyun-Jung;Yang, Hyun-Suk;Kim, Kun-Woo;Baek, Young-Jin;Kim, Yoon-Sik;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.182-189
    • /
    • 2007
  • This paper describes the implementation of control and monitoring system of ship's lamps at local area using power line communication method, power line modem(PLM). We design modem, microprocessor interface for electric power control by frequency control and analog to digital signal conversion, lamp device. PLM communication is very economical using existing electric power line unlike RS-232, RS-485 communications. We verify and confirm by experimental work that control and monitor lamp system for ship by an PLM communication.

FPGA Implementation of Fuzzy Logic Controller for Maximum Power Point Tracking in Solar Power System (태양전지 최대전력점 추종제어를 위한 퍼지 제어기의 FPGA구현)

  • Lee, Woo-Hee;Kim, Hyung-Jin;Lee, Hoong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.106-111
    • /
    • 2007
  • In this study, we designed a digital fuzzy logic controller based on FPGA and microprocessor for MPPT of the sofar power generation system. A fuzzy algorithm to control the power tracking function of a boost converter has been built into the FPGA, and applied to the small scaled solar power generation system. The embodied controller showed a stable operation characteristic with the small output voltage ripple for the intensity change of solar radiation. This result proves that the implementation of the power tracking controller using FPGA is an effective way compared to the existing one using microprocessor.

Development of the Patient Monitor Using Microprocessor(II) (Microprocessor를 이용한 Patient Monitor 개발(II))

  • Kim, Nam-Hyun;Kim, Jeong-Lae;Huh, Jae-Man
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.101-106
    • /
    • 1995
  • In this paper, the patient monitor consisting of ECG/Respiration Amplification, Front end CPU, Main CPU, Main Controller, Video Amplifier, Display Controller, Waveform Generator, Bus & Power Supply, 8097 Processor was developed. This patient monitor measures the patient's states in the hospital such as elecctro-cardiography, respiration, blood pressurae and temperature. The control and processing methods based on micro-processor employ the flexibility, extensibility over other conventional system. The followings are incorporated in this system. First, ECG/RESP measures the respiration by impedence pneumography. Second, FECPU utilizes an Intel 8031 microcontroller. Third, Controller function originate from a LSI CRT controller.

  • PDF