• Title/Summary/Keyword: Microphone position

Search Result 70, Processing Time 0.023 seconds

Is the SAM phantom conservative for SAR evaluation of all phone designs?

  • Lee, Ae-Kyoung;Hong, Seon-Eui;Choi, Hyung-Do
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.337-347
    • /
    • 2019
  • The specific anthropomorphic mannequin (SAM) phantom was designed to provide a conservative estimation of the actual peak spatial specific absorption rate (SAR) of the electromagnetic field radiated from mobile phones. However, most researches on the SAM phantom have been based on early phone models. Therefore, we numerically analyze the SAM phantom to determine whether it is sufficiently conservative for various types of mobile phone models. The peak spatial 1- and 10-g averaged SAR values of the SAM phantom are numerically compared with those of four anatomical head models at different ages for 12 different mobile phone models (a total of 240 different configurations of mobile phones, head models, frequencies, positions, and sides of the head). The results demonstrate that the SAM phantom provides a conservative estimation of the SAR for only mobile phones with an antenna on top of the phone body and does not ensure such estimation for other types of phones, including those equipped with integrated antennas in the microphone position, which currently occupy the largest market share.

Automatic Eggshell Crack Detection System for Egg Grading (계란 등급판정을 위한 파각란 자동 검사 시스템)

  • Choi, Wan-Kyu;Lee, Kang-Jin;Son, Jae-Ryong;Kang, Suk-Won;Lee, Ho-Young
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.348-354
    • /
    • 2008
  • Egg grading is determined by exterior and interior quality. Among the evaluation methods for the egg quality, a candling method is common to identify eggs with cracked shells and interior defects. But this method is time-consuming and laborious. In addition, practically, it is challenging to detect hairline and micro cracks. In this study, an on-line inspection system based on acoustic resonance frequency analysis was developed to detect hairline cracks on eggshells. A roller conveyor was used to transfer eggs along one lane to the impact position where each of eggs rotated by the roller was excited with an impact device at four different locations on the eggshell equator. The impact device was consisted of a plastic hammer and a rotary solenoid. The acoustic response of the egg to the impact was measured with a small condenser microphone at the same position as the impact device was installed. Two acoustic parameters, correlation coefficient for normalized power spectra and standard deviation of peak resonant frequencies, were used to detect cracked eggs. Intact eggs showed relatively high correlations among the four normalized power spectra and low standard deviations of the four peak resonant frequencies. On the other hand, cracked eggs showed low correlations and high standard deviations as compared to the intact. This method allowed a crack detection rate of 97.6%.

Experiments on the noise source identification from a moving vehicle (이동하는 운송체의 외부소음원 측정에 관한 실험적 연구)

  • Hong, Suk-Ho;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.238-243
    • /
    • 2008
  • Several experimental techniques for identifying the noise sources distributed over a moving vehicle have been developed recently and are used to design a low noise vehicle. The beamforming method, which uses phase information between several microphones to localize the source position, is proved to be one of the promising techniques applicable even under complicated test environments. In this study a beamforming algorithm is developed and applied to measure the dominant noise sources on a passenger car passing by. Unlike the acoustic signals from a stationary noise source, the sound generated from a moving source is distorted due to the Doppler effects. The information about the speed and relative position of the vehicle are used to eliminate the Doppler effects from the measured acoustic signal by using a de-Dopplerization algorithm. The noise generated from a moving vehicle can be grouped in many ways, however, tire noise and the noise generated from the engine are distinguishable at the speeds being tested.

Real-Time Sound Localization System For Reverberant And Noisy Environment (반향음과 잡음 환경을 고려한 실시간 소리 추적 시스템)

  • Kee, Chang-Don;Kim, Ghang-Ho;Lee, Taik-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.258-263
    • /
    • 2010
  • Sound localization algorithm usually adapts three step process: sampling sound signals, estimating time difference of arrival between microphones, estimate location of sound source. To apply this process in indoor environment, sound localization algorithm must be strong enough against reverberant and noisy condition. Additionally, calculation efficiency must be considered in implementing real-time sound localization system. To implement real-time robust sound localization system we adapt four low cost condenser microphones which reduce the cost and total calculation load. And to get TDOA(Time Differences of Arrival) of microphones we adapt GCC-PHAT(Generalized Cross Correlation-Phase Transform) which is robust algorithm to the reverberant and noise environment. The position of sound source was calculated by using iterative least square algorithm which produce highly accurate position data.

Sound event detection based on multi-channel multi-scale neural networks for home monitoring system used by the hard-of-hearing (청각 장애인용 홈 모니터링 시스템을 위한 다채널 다중 스케일 신경망 기반의 사운드 이벤트 검출)

  • Lee, Gi Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.600-605
    • /
    • 2020
  • In this paper, we propose a sound event detection method using a multi-channel multi-scale neural networks for sound sensing home monitoring for the hearing impaired. In the proposed system, two channels with high signal quality are selected from several wireless microphone sensors in home. The three features (time difference of arrival, pitch range, and outputs obtained by applying multi-scale convolutional neural network to log mel spectrogram) extracted from the sensor signals are applied to a classifier based on a bidirectional gated recurrent neural network to further improve the performance of sound event detection. The detected sound event result is converted into text along with the sensor position of the selected channel and provided to the hearing impaired. The experimental results show that the sound event detection method of the proposed system is superior to the existing method and can effectively deliver sound information to the hearing impaired.

Coherent Analysis of vehicle HVAC Using the MDSA Method (다차원 해석법을 이용한 자동차 공조시스템의 기여도분석)

  • Oh Jae-Eung;Hwang DongKun;Abu Aminudin;Lee Jung-Youn;Kim SungSoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.143-150
    • /
    • 2005
  • To verify applicability of multi-dimensional spectral analysis (MDSA) fur noise source identification two different approaches which are frequency response and coherent function have been investigated. The coherence function approach appears able to separate the correlated system when the noise sources were coherent. In this study, we identify contribution of structure-borne-noise of vehicle HVAC system using MDSA method. Firstly, to identify the applicability of MDSA method, 4-inputs of vehicle HVAC system were the signals measured by accelerometers attached on the selected noise sources which were composed of blower, evaporator, heater and duct. While 1-output which was driver's position sound was the SPL signals measured by a remote microphone, when the blower motor was operating. We identify efficiency of systems modeled with four Inputs/single output through ordinary coherence function (OCF) and partial coherence function (PCF). As a result of experiment, the blower accounted for $62-88\%$ of the overall level of sound energy density. Also, according to the analysis of acoustic signal and vibration signals measurement, an investigation of the noise source identification in the vehicle HVAC is presented. With the sound intensity method, the major sources of the vehicle HVAC radiation are verified. Also the method of improving the noise reduction is proposed by attaching damping patch access to blower motor and noise reduction is verified.

Human-Computer Interaction Based Only on Auditory and Visual Information

  • Sha, Hui;Agah, Arvin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.285-297
    • /
    • 2000
  • One of the research objectives in the area of multimedia human-computer interaction is the application of artificial intelligence and robotics technologies to the development of computer interfaces. This involves utilizing many forms of media, integrating speed input, natural language, graphics, hand pointing gestures, and other methods for interactive dialogues. Although current human-computer communication methods include computer keyboards, mice, and other traditional devices, the two basic ways by which people communicate with each other are voice and gesture. This paper reports on research focusing on the development of an intelligent multimedia interface system modeled based on the manner in which people communicate. This work explores the interaction between humans and computers based only on the processing of speech(Work uttered by the person) and processing of images(hand pointing gestures). The purpose of the interface is to control a pan/tilt camera to point it to a location specified by the user through utterance of words and pointing of the hand, The systems utilizes another stationary camera to capture images of the users hand and a microphone to capture the users words. Upon processing of the images and sounds, the systems responds by pointing the camera. Initially, the interface uses hand pointing to locate the general position which user is referring to and then the interface uses voice command provided by user to fine-the location, and change the zooming of the camera, if requested. The image of the location is captured by the pan/tilt camera and sent to a color TV monitor to be displayed. This type of system has applications in tele-conferencing and other rmote operations, where the system must respond to users command, in a manner similar to how the user would communicate with another person. The advantage of this approach is the elimination of the traditional input devices that the user must utilize in order to control a pan/tillt camera, replacing them with more "natural" means of interaction. A number of experiments were performed to evaluate the interface system with respect to its accuracy, efficiency, reliability, and limitation.

  • PDF

Stress Detection of Railway Point Machine Using Sound Analysis (소리 정보를 이용한 철도 선로전환기의 스트레스 탐지)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Lee, Jonghyun;Chung, Yongwha;Kim, Hee-Young;Yoon, Sukhan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.433-440
    • /
    • 2016
  • Railway point machines act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Since point failure can significantly affect railway operations with potentially disastrous consequences, early stress detection of point machine is critical for monitoring and managing the condition of rail infrastructure. In this paper, we propose a stress detection method for point machine in railway condition monitoring systems using sound data. The system enables extracting sound feature vector subset from audio data with reduced feature dimensions using feature subset selection, and employs support vector machines (SVMs) for early detection of stress anomalies. Experimental results show that the system enables cost-effective detection of stress using a low-cost microphone, with accuracy exceeding 98%.

Outdoor Care System using WEMOS and Arduino MEGA (WEMOS와 아두이노 MEGA를 이용한 외출 케어 시스템)

  • Jeong-Geun Choi;Chang-Hyun Kim;Chan-Gyu Lee;Geon-Ho Choi;Boong-Joo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.677-686
    • /
    • 2023
  • In this paper, we study the design and implementation of a smart home outing care system that recognizes the user's purpose of going out and delivers useful information that can help when going out. RSS service data of the Korea Meteorological Administration can be transmitted in real time using ESP8266, and a system that can provide weather information to users after analyzing the data using Arduino MEGA is implemented. Using App Inventor, you can pack the necessary items without forgetting, and you can change the settings according to the desired weather and purpose. The position of the microphone was placed outside to increase awareness by 12%, and the sensitivity of the pressure sensor was set to a maximum of 210 kΩ. If there is an obstacle between the doors, the doors open automatically. An ultrasonic sensor was placed on the ceiling of the drawer to recognize an object within the range of 0.5cm to 10cm to check the existence of an object, and a camera was installed to research a security reinforcement system.

Comparative Study on Acoustic Characteristics of Vocal Fold Paralysis and Benign Mucosal Disorders of Vocal Fold (성대마비와 양성 성대점막질환의 음향학적 특성비교)

  • Kong, Il-Seung;Cho, Young-Ju;Lee, Myung-Hee;Kim, Jong-Seung;Yang, Yun-Su;Hong, Ki-Hwan
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2007
  • This study aims to analyze the voices of the patients with voice disorders including vocal fold paralysis, vocal fold cyst and vocal nodule/polyp in the aspect of acoustic phonetics. This study intends to collect subsidiary acoustic data in order to make a speech treatment and an standardization of vocal disorders. Subjects and Methods: The subjects of this study were 64 adult patients who underwent indirect laryngoscopy and laryngostroboscopy, and were diagnosed as vocal fold paralysis, vocal fold cyst or vocal nodule/polyp. Experimental group consisted of 20 patients who were diagnosed as vocal fold paralysis, 21 patients who were diagnosed as vocal fold cyst and had the average age of 42.0 $({\pm}10.03)$ ; and 23 patients who were diagnosed as vocal nodule/polyp and had the average age of 40.9 $({\pm}13.75)$. For the methodology of this study, the patients listed above were asked to sit in a comfortable position at intervals of 10cm apart from the patient's mouth and a microphone, and subsequently to phonate a vowel sound /e/ for the maximum phonation time with natural tone and vocal volume then the sound was directly inputted on a computer. During recording, sampling rate was set to 44,100Hz and the 1-second area corresponding to stable zone except the first and the last stage of waveform of the vowel sound /e/ vocalized by the individual patients was analyzed. Results: First, there was no statistically significant difference in jitter and shimmer between vocal fold paralysis and vocal fold cyst, while there was highly statistically significant difference in them between vocal fold paralysis and vocal nodule/polyp. Second, looking into the mean values obtained from NNE, HNR and SNR results associated with noise ratio, the disease showing the most abnormal characteristics was vocal fold paralysis, followed by cyst and nodule/polyp in order. For NNE, there was statistically significant difference between vocal nodule/polyp, and cyst or paralysis. In other words, it was found that the NNE of vocal nodule/polyp was weaker than that of cyst or paralysis. Similarly, HNR and SNR also showed the same characteristics; there was statistically significant difference between vocal fold paralysis and vocal fold cyst or nodule/polyp, and HNR and SNR values of vocal fold paralysis were lower than those of vocal fold cyst or nodule/polyp. Conclusion: For vocal fold paralysis, the abnormal values of acoustic parameters associated with frequency, amplitude and noise ratio were statistically significantly higher than those of vocal fold cyst and nodule/polyp. This finding suggests that the voices of the patients with vocal fold paralysis are the most severely injured due to less stability of vocal fold movement, asymmetry and incomplete glottic closure. In addition, there was no statistically significant difference in the acoustic parameters of tremor among vocal fold paralysis, vocal fold cyst and vocal nodule/polyp. Further studies need to ascertain reasonable acoustic parameters with various vocal disorders as well as to clarify the correlation between acoustics-based objective tools and subjective evaluations.

  • PDF