DOI QR코드

DOI QR Code

Real-Time Sound Localization System For Reverberant And Noisy Environment

반향음과 잡음 환경을 고려한 실시간 소리 추적 시스템

  • 기창돈 (서울대학교 기계항공공학부) ;
  • 김강호 (서울대학교 기계항공공학부 대학원) ;
  • 이택진 (서울대학교 기계항공공학부 대학원)
  • Received : 2009.12.01
  • Accepted : 2010.02.23
  • Published : 2010.03.01

Abstract

Sound localization algorithm usually adapts three step process: sampling sound signals, estimating time difference of arrival between microphones, estimate location of sound source. To apply this process in indoor environment, sound localization algorithm must be strong enough against reverberant and noisy condition. Additionally, calculation efficiency must be considered in implementing real-time sound localization system. To implement real-time robust sound localization system we adapt four low cost condenser microphones which reduce the cost and total calculation load. And to get TDOA(Time Differences of Arrival) of microphones we adapt GCC-PHAT(Generalized Cross Correlation-Phase Transform) which is robust algorithm to the reverberant and noise environment. The position of sound source was calculated by using iterative least square algorithm which produce highly accurate position data.

소리를 이용한 위치 추적은 마이크로폰을 이용하여 신호를 수집하고 수집된 신호로 부터 마이크로폰 간의 신호 도달 시간차를 추정한 뒤 추정된 시간차를 이용하여 소리의 발생 위치를 추정하는 과정을 거치게 된다. 실내 환경에서 이를 활용하기 위해서는 잡음과 반향음에 대한 강건성을 확보해야만 하는 제약이 따른다. 특히 실시간으로 구현하기 위해서는 계산의 효율성까지 고려되어야 한다. 본 논문에서는 네 개의 저가 콘덴서 마이크로폰을 이용하여 비용적인 측면과 계산량에서의 효율성을 모두 추구하였다. 네 개의 마이크로폰을 이용하여 마이크로폰 간의 소리 도달 시간차를 구하는 계산량을 줄였고 GCC-PHAT(Generalized Cross Correlation-Phase Transform) 알고리즘을 이용해서 강건성을 높였으며 iterative least square 방식을 이용하여 높은 정확도의 위치 데이터를 얻을 수 있었다.

Keywords

References

  1. M. Brandstein and D. Ward(Eds), “Microphone Arrays”, Signal Processing Techniques and Applicatoins, Springer, 2001.
  2. C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay”, Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 24, no. 4, Aug 1976, pp. 320-327. https://doi.org/10.1109/TASSP.1976.1162830
  3. M. S. Brandstein and H. F. Silverman, “A robust method for speech signal time-delay estimation in reverberant rooms”, Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing, 1997, pp. 375-378. https://doi.org/10.1109/ICASSP.1997.599651
  4. Y. Chan, R. Hattin, J. Plant, “The least squares estimation of time delay and its use in signal detection”, Acoustics, Speech and Signal Processing, IEEE Transactions on, Vol. 26, No. 3, 29 January 2003, pp. 217-222.
  5. A. Badali, J.-M. Valin, F. Michaud, and P. Aarabi, “Evaluating Real-time Audio Localization Algorithms for Artificial Audition in Robotics”, http://people.xiph.org/~jm/papers/iros09_badali.pdf. https://doi.org/10.1109/IROS.2009.5354308
  6. J.-M. Valin, F. Michaud, J. Rouat, and D. Letourneau, “Robust sound source localization using a microphone array on a mobile robot”, Proceedings International Conference on Intelligent Robots and Systems, 2003, pp. 1228-1233.
  7. Michael Brandstein , Michael S. Br , John E. Adcock , Harvey F. Silverman, “Microphone-Array Localization Error Estimation with Application to Sensor Placement”, Acoustical Society of America, 1996, pp. 3807-3816.
  8. J.P. Dmochowski, J. Benesty, S. Affes, “A Generalized Steered Response Power Method for Computationally Viable Source Localization”, Audio, Speech, and Language Processing, IEEE Transactions on, Volume 15, Issue 8, Nov, 2007, pp. 2510-2526. https://doi.org/10.1109/TASL.2007.906694
  9. K. Takahashi, H. Yamasaki, “Audio-visual sensor fusion system for intelligent sound sensing, Multi sensor Fusion and Integration for Intelligent Systems”, 1994. IEEE International Conference on MFI '94, Oct 1994, pp. 493-500. https://doi.org/10.1109/MFI.1994.398413

Cited by

  1. The mobile data processing system for noise measured in a living environment vol.19, pp.8, 2015, https://doi.org/10.6109/jkiice.2015.19.8.1943