• Title/Summary/Keyword: Micronucleus assay

Search Result 191, Processing Time 0.036 seconds

Development of a Noble Dosimetry Using Metaphase Analysis and Micronuclei Assay of Bone Marrow Cells in Mice (마우스 골수세포의 중기염색체 분석 및 미소핵 검사를 이용한 피폭선량 평가법의 개발)

  • Min, Jung-Jun;Bom, Hee-Seung;Kim, Young-Ho;Yoon, Hyun-Joong;Kim, Ji-Yeul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.74-81
    • /
    • 2000
  • Purpose: The purpose of this study was to develop in vivo dosimetries using both chromosomal aberrations and micronuclei in mice to assess biological effects of radiations. Materials and Methods: Five each mice were irradiated with 0, 1, 2, 3, 4, 5, 10 Gy of Cs-137 gamma-rays. We scored numbers of chromosomal aberrations in metaphase spreads and numbers of micronuclei in bone marrow smears under light microscope, and obtained the dose-response relationships. We also examined the relationship between the two dose-response curves. Results: The frequency of both chromosomal aberrations and micronuclei increased with dose, in a linear-quadratic manner The delta, beta, and alpha coefficients were 0.0176, 0.0324, and 0.0567 for metaphase analysis (r=1.0, p<0.001) and 0.0019, 0.0073, and 0.0506 for micronuclei assay (r=1.0, p<0.001). The frequency of chromosomal aberrations and micronuclei in different radiation doses was significantly correlated (r=0.99, p<0.01). Conclusion: In vivo dosimetry using either metaphase analysis or micronucleus assay was feasible in mice. These methods could be useful to evaluate biological effects of radiation.

  • PDF

Genotoxicological Safety Evaluation of X-ray Irradiated Four Foods (X-선 조사식품 4종의 유전독성학적 안전성 평가)

  • Jung, Da-Woon;Huang, Yu-Hua;Song, Beom-Seok;Byun, Myung-Woo;Kang, Il-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.10
    • /
    • pp.1588-1593
    • /
    • 2014
  • This study evaluated the genotoxic effects of 30 kGy of X-ray irradiation to four foods (chicken, egg powder, dried green onion, and black pepper). In bacterial reversion assay with Salmonella Typhimurium TA98, TA100, TA1535, and TA1537, the X-ray irradiated foods did not show a significantly increased number of revertant colonies in the presence or absence of the S9 metabolic activation system. In chromosomal aberration tests with Chinese hamster ovary (CHO) cells, the X-ray irradiated foods showed no increase in the frequency of chromosomal aberrations. In in vivo mouse micronucleus assay, the X-ray irradiated foods did not show any increase in the frequency of polychromatic erythrocytes with micronuclei. These results indicate that 30 kGy of X-ray irradiation to four foods (chicken, egg powder, dried green onion, and black pepper) showed no genotoxic effects under these experimental conditions.

Genotoxicological and Acute Toxicological Safeties of Gamma Irradiated Beef (감마선조사 쇠고기의 유전독성 및 급성독성학적 안전성평가)

  • Kang, Il-Jun;Kwak, Hee-Jin;Lee, Byung-Hoon;Kim, Kwang-Hoon;Byun, Myung-Woo;Yook, Hong-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.775-780
    • /
    • 1998
  • Gamma irradiation at 5 kGy was applied to beefs for evaluation of their possible genotoxicity and acute oral toxicity. The genotoxicity of 5 kGy irradiated beef was evaluated by Salmonella typhimurium reversion assay and in vivo micronucleus assay using mouse bone marrow cells. The results were negative in the bacterial reversion assay with S. typhimurium TA98, TA100, TA1535, TA1537. Clastogenic effects were not shown in vivo mouse micronucleus assay at 5 kGy dose tested. In an acute toxicity test, 5 kGy-irradiated beef was administrated orally at a dose level of 313 to 5,000 mg/kg, and then number of deaths, clinical signs, body weights, and pathological examinations were examined daily for 14 days post-administration. The results indicate that 5 kGy irradiated beef did not show any toxic effect on mice and oral $LD_{50}$ value was over 5,000 mg/kg on ICR mice.

  • PDF

Genotoxicological Safety of Gamma-Irradiated Kwamegi(semi-dried Colobabis seira) (감마선 조사된 과메기의 유전독성학적 안전성 평가)

  • 육홍선;정영진;송현파;이주운;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.182-192
    • /
    • 2004
  • Gamma irradiation at 5 and 10 kGy was applied to Kwamegi (semi-dried Colobabis seira) for their possible hygiene quality and carried out genotoxicological safety. In vitro genotoxicological safety of each 5 and 10 kGy-irradiated Kwamegi was evaluated by Salmonella typhimurium (TA98, TA100, TA1535 and TA1537) and E. coli WP2 uvrA reversion assay, SOS chromotest (Escherichia coli PQ37) and chromosome aberration test (Chinese hamster lung fibroblast cells) in the absence and presence of an exogenous metabolizing system (S9 mix). Gamma-irradiated samples were not different from nonirradiated-control to respective in vitro tests. And in vivo micronucleus test using ICR mice (male) micronucleus was not observed. Kwamegi exposed to 10 kGy-gamma ray revealed negative results in these three in vitro mutagenetic tests and in vivo micronucleus test up to 10,000 $\mu\textrm{g}$/plate, respectively. The results indicated that 5 and 10 kGy gamma-irradiated Kwamegi (semi-dried Colobabis seira) did not have mutagenicity.

Safety of Nano-sized Bee Pollen in both In-vitro and In-vivo Models (생체 외 및 생체 내 실험조건에서 나노화 벌 화분의 안전성 규명)

  • Pyeon, Hae-In;So, Soojeong;Bak, Jia;Lee, Seunghyun;Lee, Seungmin;Suh, Hwa-Jin;Lim, Je-Oh;Kim, Jung-Woo;Kim, Sun Youn;Lee, Se Ra;Lee, Yong Hyun;Chung, Il Kyung;Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.605-614
    • /
    • 2018
  • Bee pollen has an outer wall which is resistant to both acidic and basic solutions and even the digestive enzymes in the gastrointestinal tract. Therefore, the oral bioavailability of bee pollen is only 10-15%. A previous study reported on wet-grinding technology which increased the extraction of active ingredients from bee pollen by 11 times. This study was designed to investigate the safety of wet-ground bee pollen. First, a single dose of wet-ground bee pollen was tested in both rats and beagle dogs at dosages of 5, 10, and 20 g/kg and 1.5, 3, and 6 g/kg, respectively. In rats, compound-colored stools were found in those administered 10 g/kg or more of wet-ground bee pollen. In beagle dogs, 6 g/kg of wet-ground bee pollen induced diarrhea in one male for four hours. However, no obvious clinical signs were found through the end of the experiment in rats and beagle dogs. In addition, no histological abnormality was found in all animals. The data indicates that a single dose of up to 20 g/kg of wet-ground bee pollen is safe. Next, the genetic toxicity of nano-sized bee pollen was tested. This study employed a bacterial reverse mutation test, a micronucleus assay, and a chromosomal aberration assay. In the micronucleus assay, there was no genetic toxicity up to the dosage of 2 g/kg. There was also no genetic toxicity in the bacterial reverse mutation test and chromosomal aberration assay. This data provides important information in developing nano-sized bee pollen into more advanced functional foods and herbal medicines.

Chromosomal Aberration Assay of Taxol and 10-deacetyI baccatin III in Chinese Hamster Lung Cells In Vilro

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Ryu, Eun-Kyung;Kim, Hyun-Joo;Kwon, Oh-Seung;Song, Choong-Eui;Mar, Woong-Chon;Chang, Il-Moo
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.1
    • /
    • pp.6-12
    • /
    • 1996
  • To investigate the clastogenicity of taxol and its precursor, 10-aleacetyl baccatin III, we performed chromosomal aberration assay with chinese hamster lung cells in vitro. The IC$_{50}$ values of taxol and 10-deacetyl baccatin III were determined as $1/16 \times 10^{-4}$ M (5.34 $\mu$g/ml) and $1 \times 10^{-2}$ M (560 $\mu$g/ml) in MTT assay, respectively. It means that the cytotoxicity of taxol revealed 100 times more cytotoxic than 10-deacetyl baccatin III in chinese hamster lung cell line. Nevertheless the strong positive genetic toxicity of taxol in the bone marrow micronucleus assay in vivo which was recently reported, we observed weak positive clastogenicity of taxoi only in the absence of metabolic activation system in the concentration ranges used in this experiment. Moreover, to clarify the involvement of metabolic fate of taxol because of its strong positive result in vivo, 10-deacetyl baccatin III which is a precursor in taxol synthesis, also subjected in chromosomal aberration assay in vitro. However, we observed no clastogenicity of 10-deacetyl baccatin III in this experiment. From above results, it was suggested that the esterification at C-13 appears to be relative for its genetic toxicity in chromosome aberration using chinese hamster lung cell in vitro.

  • PDF

Genotoxicity Study of Litsea japonica Fruit Flesh Extract (까마귀쪽나무열매추출물의 유전독성 평가)

  • Yun, Ji-Hyun;Park, In-Jae;Park, Sung-Hwan;Choi, Goo-Hee;Kim, Hyun-Jung;Cho, Ju-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.207-213
    • /
    • 2018
  • This study aimed to evaluate the genotoxicity of Litsea japonica fruit-hexane extract (LJF-HE). In order to examine the genotoxicity, we carried out bacterial reverse mutation assay, chromosome aberration assay, and a micronucleus induction (MN) test according to the OECD and the Korea Ministry of Food and Drug Safety (MFDS) toxicity test guidelines. In the bacterial reverse mutation assay, no significant increase in revertant colonies, nor bacterial toxicity, was observed in the LJF-HE treatment group, regardless of the absence or presence of metabolic activation by the S9 mixture. However, in the positive control group, revertant colony counts were shown to be more than twice that of the negative control group. The chromosome aberration test showed that the repetition rate of abnormal chromosome aberration was less than 5%, regardless of the treatment time, and with or without the S9 mixture. No significant change was observed when (p < 0.05) compared with the negative control group. The micronucleated polychromatic erythrocytes (MNPCE) repetition rate of the polychromatic erythrocytes (PCE) showed no significant changes when compared with the negative control group (p < 0.05). The PCE portion of total erythrocytes also showed no significant changes (p < 0.05). These results showed that LJF-HE had no significant genotoxic effects.

Genotoxicity Study of Immature Green Persimmon Extract (풋감 주정 추출물의 유전독성 연구)

  • Ham, Young-Min;Yoon, Seon-A;Hyun, Ho Bong;Go, Boram;Jung, Yong-Hwan;Oh, Dae-Ju;Yoon, Weon-Jong
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.567-573
    • /
    • 2020
  • The persimmon is commonly cultivated in temperate regions of the world, including China, Korea, Japan, Brazil, Turkey, and Italy. In some Asian cultures, consumers are aware of the health claims related to the persimmon and its functional ingredients. The rich phytochemistry of the persimmon has opened new avenues of research on diet-based regimens designed to cure various ailments. This study was conducted to identify the genotoxicity of immature green persimmon (Diospyros kaki THUNB.) extract (DKA). The bacterial reverse mutation assay, the chromosomal aberration assay, and the mammalian micronucleus test were performed to determine the DKA genotoxicity. The result of the bacterial reverse mutation assay revealed that the DKA did not induce mutagenicity in Salmonella typhimurium TA98, TA100, TA1535, TA1537 and Escherichia coli WP2uvrA with or without metabolic activation of S9 mixture. The oral administration of DKA also caused no significant increase in the number of micronucleated polychromatic erythrocytes or in the mean ratio of polychromatic to total erythrocytes. In addition, DKA did not cause a significant chromosome aberration on CHL cells in the presence or absence of S9 activation. In conclusion, DKA could be considered as a reliable and safe functional food since no toxicity was found under the condition of this study.

Antigenotoxicity and Action Mechanism of Quercetin and its Glycosides against Oxidative DNA Damage (Oxidative DNA 손상에 대한 Quercetin 및 그 배당체들의 유전독성억제효과와 작용기전)

  • 김수희;허문영
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.116-121
    • /
    • 1999
  • Quercetin and its glycosides showed a strong free radical scavenging effect to DPPH radical generation. However, there were not big differences between quercetin aglycone and glycosides under experimental condition of this study. On the other hand, quercetin had pro-oxidant effect in bleomycin-dependent DNA assay. Quercetin aglycone and its glycosides, quercitrin inhibited $H_2$$O_2$- induced DNA damage in CHL cells. They also have an anticlastogenicity toward DNA breakage agent by radical generation like bleomycin. These results indicate that quercetin aglycone and its glycosides are capable of protecting the free radical generation induced by reactive oxygen species like $H_2$$O_2$. The mechanism of inhibition in hydrogen peroxide-induced genotoxicity may be due to their free radical scavenging properties. Therefore, quercetin aglycone and its glycosides may be useful chemopreventive agents by protecting of free radical generation which are involved in carcinogenesis and aging. However, quercetin and its glycosides must also carefully examined for pro-oxidant properties before being proposed for use in vivo.

  • PDF

Genetic Toxicity Test of Methylcarbamate by Ames, Micronucleus, Comet Assays and Microarray Analysis

  • Kwon, Kyoung-J.;Go, Seo-Y.;Park, Sue-N.;Sheen, Yhun-Y.
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.199-204
    • /
    • 2007
  • Carbamates have excellent insecticidal activities against a broad spectrum of insects. They possess knocking-down, fast-killing, and systemic effects, however, they are toxic to mammals. In this study, we have carried out in vitro genetic toxicity test of methylcarbamate and microarray analysis of differentially expressed genes in response to methylcarbamate. Methylcarbamate did not show mutations in base substitution strain TA1535 both with and without exogenous metabolic activation. Methylcarbamate did not show mutations in frame shift TA98 both with and without exogenous metabolic activation. Methylcarbamate showed DNA damage based on single cell gel/comet assay in L5178Y cells both with and without exogenous metabolic activation. Methylcarbamate did not increase micronuclei in CHO cells both with and without exogenous metabolic activation. Microarray analysis of gene expression profiles in L5178Y cells in response to methylcarbamate selected differentially expressed 132 genes that could be candidate biomarkers of genetic toxic action of methylcarbamate.