• Title/Summary/Keyword: Microneedle array

Search Result 10, Processing Time 0.032 seconds

Fabrication of Microneedle Array Using Inclined LIGA Process (경사 LIGA 공정을 이용한 미세 바늘 어레이의 제작)

  • Moon, Sang-Jun;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1871-1876
    • /
    • 2004
  • We demonstrate a novel fabrication technology for the microneedle array that can be used in the medical test field, which is transdermal drug delivery and blood analyte sampling. Previous researchers have used silicon-processed micromachining, a reactive ion etching, and molding techniques for the fabrication of microneedle array. However, these fabrication techniques have somewhat limitations apply to the microneedle array fabrication according to its application. Inclined LIGA process is suggested to overcome these problems. This process provides easier, sharper and longer out-of-plane microneedle array structure than conventional silicon-processed fabrication method did. Additionally, because of the advantage of the LIGA process based on mold fabrication for mass production, the polymer, PMMA(PolyMethylMethAcrylate), based microneedle array is useful as the mold base of nickel electroplating process; on the other hand, silicon-processed microneedle array is used in itself. In this research, we fabricate different types of out-of-plane microneedle array, which have different shape of tip, base and hole structure, using the inclined LIGA process. The fabricated microneedles have proper mechanical strength, height and sharpness to puncture human hand epidermis or dermis with less pain and without needle tip break during penetrating the skin.

Research on the Development of Microneedle Arrays Based on Micromachining Technology and the Applicability of Parylene-C (미세가공 기술 기반의 마이크로니들 어레이 개발 및 패럴린 적용 가능성에 관한 연구)

  • Dong-Guk Kim;Deok-kyu Yoon;Yongchan Lee;Min-Uk Kim;Jihyoung Roh;Yohan Seo;Kwan-Su Kang;Young Hun Jeong;Kyung-Ah Kim;Tae-Ha Song
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.404-413
    • /
    • 2023
  • In this research, we studied the development of a SUS304 microneedle array based on microfabrication technology and the applicability of Parylene-C thin film, a medical polymer material. First of all, four materials commonly used in the field of medical engineering (SUS304, Ti, PMMA, and PEEK) were selected and a 5 ㎛ Parylene-C thin film was deposited. The applicability of Parylene-C coating to each material was confirmed through SEM analysis, contact angle measurement, surface roughness(Ra) measurement, and adhesion test according to ASTM standards for each specimen. Parylene-C thin film was deposited based on chemical vapor deposition (CVD), and a 5 ㎛ Parylene-C deposition process was established through trial and error. Through characteristic experiments to confirm the applicability of Parylene-C, SUS304 material, which is the easiest to apply Parylene-C coating without pretreatment was selected to develop a microneedle array based on CNC micromachining technology. The CNC micromachining process was divided into a total of 5 steps, and a microneedle array consisting of 19 needles with an inner diameter of 200 ㎛, an outer diameter of 400 ㎛, and a height of 1.4 mm was designed and manufactured. Finally, a 5 ㎛ Parylene-C coated microneedle array was developed, which presented future research directions in the field of microneedle-based drug delivery systems.

Fabrication of Hollow-type Silicon Microneedle Array Using Microfabrication Technology (반도체 미세공정 기술을 이용한 Hollow형 실리콘 미세바늘 어레이의 제작)

  • Kim, Seung-Kook;Chang, Jong-Hyeon;Kim, Byoung-Min;Yang, Sang-Sik;Hwang, In-Sik;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2221-2225
    • /
    • 2007
  • Hollow-type microneedle array can be used for painless, continuous and stable drug delivery through a human skin. The needles must be sharp and have sufficient length in order to penetrate the epidermis. An array of hollow-type silicon microneedles was fabricated by using deep reactive ion etching and HNA wet etching with two oxide masks. Isotropic etching was used to create tapered tips of the needles, and anisotropic etching of Bosch process was used to make the extended length and holes of microneedles. The microneedles were formed by three steps of isotropic, anisotropic, and isotropic etching in order. The holes were made by one anisotropic etching step. The fabricated microneedles have $170{\mu}m$ width, $40{\mu}m$ hole diameter and $230{\mu}m$ length.

Semi-active Vibration Drug Delivery Device Design using a Micro-needle Fabrication and Array (미세바늘제작 및 배열을 이용한 반 능동형 가진 약물주입기구 설계)

  • Sung, Yeon-wook;Park, Jean Ho;Lee, Hye-Jin
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.48-51
    • /
    • 2011
  • Transdermal drug delivery device is a method of drug delivery through the skin. Skin has a very large area, so it is attractive route to drug delivery. When drug delivery through the skin, microneedle has a advantage that painless, constant drug deliver and penetration efficient; nevertheless the cost is expensive because fabrication process need a particular equipment and not suitable in mass production. This study shows microneedle fabrication process using convergence of general MEMS process and dicing process that can make 3-D sharp microneedle tip and this fabrication process suitable for mass production.

  • PDF

A Development of Tapered Metallic Microneedle Array for Bio-medical Application (생체의학에 적용 가능한 테이퍼형태의 금속성 마이코로니들 어레이의 개발)

  • Che Woo Seong;Lee Jeong-Bong;Kim Kabseog;Kim Kyunghwan;Jin Byung-Uk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.59-66
    • /
    • 2004
  • This paper presents a novel fabrication process for a tapered hollow metallic microneedle array using backside exposure of SU-8, and analytic solutions of critical buckling of a tapered hollow microneedle. An SU-8 meta was formed on a Pyrex glass substrate and another SU-8 layer, which was spun on top of the SU-8 mesa, was exposed through the backside of the glass substrate. An array of SU-8 tapered pillar structures. with angles in the range of $3.1^{\circ}{\sim}5^{\circ}$ was formed on top of the SU-8 mesa. Conformal electrodeposition of metal was carried out followed by a mechanical polishing using a pianarizing polymeric layer. All organic layers were then removed to create a metallic hollow microneedle array with a fluidic reservoir on the backside. Both $200{\mu}m\;and\;400{\mu}m$ tall, 10 by 10 arrays of metallic microneedles with inner diameters of the tip in the range of $33.6{\sim}101\;{\mu}m$ and wall thickness of $10{\mu}m\;-\;20{\mu}m$ were fabricated. Analytic solutions of the critical buckling of arbitrary-angled truncated cone-shaped columns are also presented. It was found that a single $400{\mu}m$ tall hollow cylindrical microneedle made of electroplated nickel with a wall thickness of $20{\mu}m$, a tapered angle of $3.08^{\circ}$ and a tip inner diameter of $33.6{\mu}m$ has a critical buckling force of 1.8 N. This analytic solution can be used for square or rectangular cross-sectioned column structures with proper modifications.

  • PDF

Fabrication of Carbon Microneedle Arrays with High Aspect Ratios and The Control of Hydrophobicity of These Arrays for Bio-Applications (고종횡비 탄소 마이크로니들 어레이의 제조 및 생체응용을 위한 소수성 표면의 제어)

  • Lee, Jung-A;Lee, Seok-Woo;Lee, Seung-Seob;Park, Se-Il;Lee, Kwang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1721-1725
    • /
    • 2010
  • This paper reports the fabrication of geometry-controlled carbon microneedles by a backside exposure method and pyrolysis. The SU-8 microneedles are a polymer precursor in a carbonization process, which geometries such as base diameter, spacing, and aspect ratio can be controlled in a photolithography step. Using this fabrication method, highly reproducible carbon microneedles, which have high aspect ratios of more than 10 and very sharp nanotips, can be realized. The quartz surface with carbon microneedles becomes very hydrophilic and its wettability is adjusted by carrying out the silane treatment. In the carbon microneedle array ($3\;{\mu}m{\times}3\;{\mu}m$), the contact angle is extremly enhanced (${\sim}180^{\circ}$); this will be advantageous in developing low-drag microfluidics and labs-on-a-chip as well as in other bio-applications.

Fabrication Enhancement of Hollow-type Silicon Microneedle Array for Transdermal Drug Delivery (경피 약물 전달을 위한 Hollow형 실리콘 미세바늘 어레이의 제작 공정 개선)

  • Kim, Seung-Kook;Chang, Jong-Hyeon;Kim, Byoung-Min;Yang, Sang-Sik;Hwang, In-Sik;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1532-1533
    • /
    • 2007
  • Hollow형 미세바늘 어레이는 주사기와 패치의 장점을 결합하여 여러 종류의 약물을 통증 없이, 전달할 수 있게 한다. 본 논문에서는 건식 식각 방법과 습식 식각 방법을 이용하여 hollow형 실리콘 미세바늘 어레이를 제작하는 제작 공정과 그 결과를 제시하였다. 미세바늘 어레이의 형태는 실리콘 웨이퍼의 앞면에서 세 번의 식각 공정을 이용해 제작되었는데, 첫 번째 건식 식각 공정으로 피부에의 침투를 원활히 하기 위해 바늘 끝을 형성하고, 두 번째 건식 식각 공정으로 바늘의 길이를 조절하며, 마지막 HNA solution을 이용한 습식 식각 공정으로 바늘을 더 가늘게 만들면서 끝을 더 날카롭게 식각한다. 바늘을 통해 약물전달이 가능하도록 웨이퍼의 뒷면으로부터 건식 식각 공정을 이용해 약물 주입통로를 형성하였다. 제작된 Hollow형 실리콘 미세바늘 어레이는 $170\;{\mu}m$의 너비와 $230\;{\mu}m$의 길이, 직경 $40\;{\mu}m$의 약물 주입통로를 가지고 있으며, $1\;cm^2$의 시편 위에 $1000\;{\mu}m$의 피치로 $9{\times}9$ 개의 바늘을 형성하였다.

  • PDF

Recent Advances in 3D/4D Printed Electronics and Biomedical Applications (3D/4D 프린트된 전자기기 및 바이오메디컬 응용기술의 최근 발전)

  • Hyojun Lee;Daehoon Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • The ability of 3D/4D printing technology to create arbitrary 3D structures provides a greater degree of freedom in the design of printed structures. This capability has influenced the field of electronics and biomedical applications by enabling the trends of device miniaturization, customization, and personalization. Here, the current state-of-the-art knowledge of 3D printed electronics and biomedical applications with the unique and unusual properties enabled by 3D/4D printing is reviewed. Specifically, the review encompasses emerging areas involving recyclable and degradable electronics, metamaterial-based pressure sensor, fully printed portable photodetector, biocompatible and high-strength teeth, bioinspired microneedle, and transformable tube array for 3D cell culture and histology.