DOI QR코드

DOI QR Code

Fabrication of Carbon Microneedle Arrays with High Aspect Ratios and The Control of Hydrophobicity of These Arrays for Bio-Applications

고종횡비 탄소 마이크로니들 어레이의 제조 및 생체응용을 위한 소수성 표면의 제어

  • Lee, Jung-A (Center for Nano- and Quantum Science, Korea Institute of Standards and Science) ;
  • Lee, Seok-Woo (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Seung-Seob (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Se-Il (Center for Nano- and Quantum Science, Korea Institute of Standards and Science) ;
  • Lee, Kwang-Cheol (Center for Nano- and Quantum Science, Korea Institute of Standards and Science)
  • 이정아 (한국표준과학연구원 나노양자연구단) ;
  • 이석우 (한국과학기술원 기계공학과) ;
  • 이승섭 (한국과학기술원 기계공학과) ;
  • 박세일 (한국표준과학연구원 나노양자연구단) ;
  • 이광철 (한국표준과학연구원 나노양자연구단)
  • Received : 2009.12.14
  • Accepted : 2010.08.06
  • Published : 2010.11.01

Abstract

This paper reports the fabrication of geometry-controlled carbon microneedles by a backside exposure method and pyrolysis. The SU-8 microneedles are a polymer precursor in a carbonization process, which geometries such as base diameter, spacing, and aspect ratio can be controlled in a photolithography step. Using this fabrication method, highly reproducible carbon microneedles, which have high aspect ratios of more than 10 and very sharp nanotips, can be realized. The quartz surface with carbon microneedles becomes very hydrophilic and its wettability is adjusted by carrying out the silane treatment. In the carbon microneedle array ($3\;{\mu}m{\times}3\;{\mu}m$), the contact angle is extremly enhanced (${\sim}180^{\circ}$); this will be advantageous in developing low-drag microfluidics and labs-on-a-chip as well as in other bio-applications.

본 논문에서는 뒷면 노광법과 감광제의 열분해법을 이용하여 다양한 형상을 가지는 탄소 마이크로니들의 제조방법과 제조된 마이크로니들을 사용하여 소수성 표면제어에 대한 연구를 수행하였다. SU-8 이 도포된 표면마스크 뒷면으로부터 자외선을 조사하여 다양한 지름, 간격, 그리고 높이를 가지는 폴리머 마이크로니들을 제조하였다. 이니들은 이후 열처리공정을 통해서 수축, 열변형 등의 형상변화를 거치면서 10 이상의 높은 종횡비와 나노사이즈의 뾰족한 팁을 가지는 탄소 재질의 마이크로니들로 변하게 된다. 탄소 마이크로니들을 가지는 석영기판은 친수성표면을 가지고 있기 때문에 표면에너지가 낮은 물질을 처리하여 소수성 정도를 제어하였다. HMDS 처리는 SU-8 니들보다는 탄소 니들의 경우에 표면의 소수성 조절에 효과가 있음을 접촉각의 측정과 XPS 측정결과로부터 확인할 수 있었다. 본 논문에서 제시하는 탄소 마이크로니들의 제조기술과 표면처리기술은 세포분석 및 바이오분야 그리고 자기세정분야 등에서 유용하게 사용될 수 있다.

Keywords

References

  1. Gao, X. and Jiang, L., 2004, “Water-Repellent Legs of Water Striders,” Nature, Vol. 432, No. 4, p. 36. https://doi.org/10.1038/432036a
  2. Cheng, Y. T., Rodak, D. E., Wong, C. A. and Hayden, C. A., 2006, “Effects of Micro- and Nano-Structures on the Self-Cleaning Behaviour of Lotus Leaves,” Nanotechnology, Vol. 17, pp. 1359-1362. https://doi.org/10.1088/0957-4484/17/5/032
  3. Zhai, L., Berg, M. C., Cebeci, F. Cü., Kim, Y., Milwid, J. M., Rubner, M. F. and Cohen, R. E., 2006, “Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle,” Nano Lett., Vol. 6, pp. 1213-1217. https://doi.org/10.1021/nl060644q
  4. Winkleman, A., Gotesman, G., Yoffe, A. and Naaman, R., 2008, “Immobilizing a Drop of Water: Fabricating Highly Hydrophobic Surfaces that Pin Water Droplets,” Nano Lett., Vol. 8, pp. 1241-1245. https://doi.org/10.1021/nl080317d
  5. Cortese, B., D’Amone, S., Manca, M., Viola, I., Cingolani, R. and Gigli, G., 2008, “Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces,” Langmuir, Vol. 24, pp. 2712-2718. https://doi.org/10.1021/la702764x
  6. Nakanishi, T., Michinobu, T., Yoshida, K., Shirahata, N., Ariga, K., Möhwald, H. and Kurth, D.G., 2008, “Nanocarbon Superhydrophobic Surfaces Created from Fullerene-Based Hierarchical Supramolecular Assemblies,” Adv. Mater., Vol. 20, pp. 443-446. https://doi.org/10.1002/adma.200701537
  7. Li, G., Chen, T., Yan, B., Ma, Y., Zhang, Z., Yu, T., Shen, Z., Chen, H. and Wu, T., 2008, “Tunable Wettability in surface-modified ZnO-based Hierarchical Nanostructures,” Appl. Phys. Lett., Vol. 92, pp. 173104(1-3).
  8. Mertsch, O., Schondelmaier, D., Rudolph, I., Kutz, O., Walter, A., Schleunitz, A., Kouba, J., Waberski, C. and Loechel, B., 2008, “Generation and Characterization of Super-Hydrophobic Micro- and Nano-Structured Surfaces,” J. Adhes. Sci. Technol., Vol. 22, No. 15, pp. 1967-1967. https://doi.org/10.1163/156856108X327648
  9. Konishi, S., Liger, M., Harder, T.A. and Tai, Y.C., 2004, “Parylene-Pyrolyzed Carbon for MEMS Applications,” MEMS' 04 Conference, pp. 161-164.
  10. Lee, J. A, Lee, S. W., Lee, K-C., Park, S. I. and Lee, S. S., 2008, “Fabrication and Characterization of Freestanding 3D Carbon Microstructures Using Multi-Exposure and Resist Pyrolysis,” J. Micromech. Microeng. Vol. 18, pp. 035012. https://doi.org/10.1088/0960-1317/18/3/035012
  11. Lee, J. A, Hwang, S. P., Kwak, J. H., Park, S. I., Lee, S. S. and Lee, K.-C., 2008, “An Electrochemical Impedance Biosensor with Aptamer-Modified Pyrolyzed Carbon Electrode for Label-Free Protein Detection,” Sensors and Actuators B, Vol. 129, pp. 372-379. https://doi.org/10.1016/j.snb.2007.08.034
  12. Izumi, A. and Oda, K., 2006, “Deposition of SiCN Films Using Organic Liquid Materials by HWCVD Method,” Thin Solid Films, Vol. 501, pp. 195-197. https://doi.org/10.1016/j.tsf.2005.07.210