• Title/Summary/Keyword: Microhole

Search Result 29, Processing Time 0.031 seconds

A study of machining chracteristics effecting on laser focusing position in the ceramics microhole machining (세리믹 미세 구멍가공에서의 레이저 초점위치가 미치는 가공특성 연구)

  • Kim, Byoung-Yong;Lee, Kun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.513-518
    • /
    • 2001
  • [ $Al_[2}O_{3}$ ] ceramics are generally used as components in processing equipment, devices or machinery. But it's difficult to machining as being machanical because $Al_[2}O_{3}$ ceramics are brittle materials. This study described a basic study of the input parameters effect on the dimension of the microhole at the $Al_[2}O_{3}$ ceramics using Nd:YAG laser. Major input parameters are peak power, pulse frequency and pulse duration in the laser microhole machining of $Al_[2}O_{3}$ ceramics. We will get a smaller microhole and diameter rate by an appropriate peak power, pulse duration.

  • PDF

A Study on the Microhole Machining Characteristics of the ${Al_2}{0_3}$ Ceramics using Excimer Laser (Excimer laser를 이용한 알루미나(${Al_2}{0_3}$) 세라믹의 미세구멍 가공 특성에 대한 연구)

  • 김병용;이건상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1072-1075
    • /
    • 2001
  • $Al_2O_3$ ceramics are generally used as components in processing equipment, devices or machinery because it can perform some functions better than competing metals or polymers. Many of these applications rely on $Al_2O_3$ ceramics special electromagnetic properties, its relative chemical inertness, hardness, strength and its temperature capabilities. But $Al_2O_3$ ceramics are brittle materials, a fact that may cause problems and at the same time be helpful while machining with laser. This study described a basic study of the input parameters effect on the dimension of the microhole at the $Al_2O_3$ ceramics using Excimer laser. In the laser microhole machining of $Al_2O_3$ ceramics, major input parameters are pulse energy, pulse power, pulse frequency and pulse numbers. In conclusion, we can get a smaller microhole and diameter rate by an appropriate pulse energy, pulse frequency and pulse number.

  • PDF

Development of Micro-EDM Machine for Microshaft and Microhole Machining (미소 축.구멍 가공용 미세 방전 가공기의 개발)

  • 김규만;김보현;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1075-1079
    • /
    • 1995
  • It is difficult to machine microparts, such as microshaft and microholes, by conventional machining. Such micropart can be easily machined by EDM because it's machining force is very low. In micro-EDM, the precise electrode movement and discharge energy control are important. Therefore, high precision motion stage and EDM device with high performance is necessary. In this research, a new EDM machine was developed and microshaft and microhole, with various shape and size, was machined.

  • PDF

A Study on the Laser Beam Characteristics during Al203 Ceramic Microhole Machining (Al203 세라믹 미세구멍 가공 시 레이저빔 특성에 관한 연구)

  • 백병만;이건상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1056-1059
    • /
    • 2001
  • These days, as dynamic function and special properties to compare traditional material, $Al_20_3$ ceramic use all over the industry. But it is very difficult to process because of high hardness and brittleness. Therefore, in this paper, it was investigated that laser process parameter which can produce appropriate quality of $Al_20_3$ ceramic microhole machining.

  • PDF

Development of Micro-EDM Machine for Microshaft and Microhole Machining (미세 축ㆍ구멍 가공을 위한 미세방전가공기의 개발)

  • 김규만;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.55-61
    • /
    • 1998
  • Recently, the needs of machining technologies of very small parts have been increasing with advent of micro-revolution. These technologies have mostly used the method applied to semi-conductor production process such as LIGA, etc. But they have serious difficulties to settle down in terms of workpiece materials, machining thickness, 3-dimensional structure. Therefore. mciro-machining technology using EDM(Electrical Discharge Machining) was proposed. It is very difficult to machine the micro-parts (microshaft, microhole) using conventional machining. Micro-machining using BDM can machine the micro-parts easily because it requires little machining force. This MEDM(Micro-EDM) need the capabilities to move a electrode and control a discharge energy precisely, and the gap control strategy to maintain the optimal discharge condition is necessary. Therefore, in this study, the new EDM machine with high precision motion stage and high-performance EDM device was developed. Using this MEDM machine, we have machined microshaft and microhole with various shapes and sizes.

  • PDF

The Microhole Machining Characteristic According to Purity of the $Al_2O_3$ Ceramics ($Al_2O_3$ 세라믹의 순도별 미세구멍 가공특성)

  • 윤혁중;임순재;이동주;한흥삼
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.32-41
    • /
    • 1999
  • This study is about Jig used in wiring when we make Probecard and Large Scale Intergrated Electronic Circuit. The most universal wiring method is molding with Bond. Polymer film is punched down and adhesives is applied after wiring. Due to shrinkage and modification many problems still have happened in the process of molding. To solve these problems, ceramic plate was introduced in the study. Using Laser, an experiment of microhole treatment on ceramic plate was proceeded. Laser energy, assistance gas, and special features by purity degree were analyzed with the 35W low capacity YAG-Laser. In the condition of energy 0.08J, frequency 20Hz and interval time 200$mutextrm{s}$, about 70${\mu}{\textrm}{m}$ microhole was adequate for the Probecard Jig. In the purity experiment of ceramic materials, high purity ceramic met with good result for microhole. But the price is too high. The shape and size of holes machined combustion gas $O_2$ were better than those in $N_2$ and Ar, the inert gas.

  • PDF

The influence of processing condition and assistance gas in microhole machining of $Al_2O_3$ ceramics ($Al_2O_3$ 세라믹의 미세구멍 가공시 가공조건과 보조가스가 미치는 영향)

  • 이광길
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.115-120
    • /
    • 1999
  • This research is a described result of experimental for the parameter's effecting the microhole machining by Nd-Yag laser, The parameters are energy, pulse interval time a kin of assisting gas and its pressure. The result reveals that parameter value of energy 0.08J, pulse 20Hz, interval time of 300 microseconds could be a good machining condition to make upper microhoel that is the diameter range of 50-70${\mu}{\textrm}{m}$. At tat time the assistant gas such air, $O_2$, Ar $N_2$, was appelied. Assistant gas of air makes heat affected zone enlarge due to burning of material surface. Also it makes microhole irregular and damageable. Because of refusion caused by chemical reaction with $Al_2O_3$ ceramic material . The $O_2$(99.9%) has good characteristics to get good drilling and smooth surface on pressure of 0.2kgf/$\textrm{cm}^2$ but it is expensive. Ar, $N_2$ make material crack and burnning and proved that to be unappropriate but, Ar was a better than $N_2$.

  • PDF

Ceramic Microhole Machining using Excimer Laser (Excimer laser를 이용한 세라믹 미세구멍 가공)

  • Paik, Byoung-Man;Lee, Kun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.519-524
    • /
    • 2001
  • These days, $Al_[2}O_{3}$ ceramic use all over the industry because dynamic function and special properties to compare traditional material. But $Al_[2}O_{3}$ ceramic is high hardness and brittleness materials. For this reason, it is very difficult to process. Therefor, In this paper, it was investigated that laser process parameter, which can produce appropriate quality of $Al_[2}O_{3}$ ceramic microhole machining utilized Nd:YAG laser and Excimer laser.

  • PDF

Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces

  • Lee, Sang Hyuk;Kim, Hyungi;Girault, Hubert H.;Lee, Hye Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2577-2582
    • /
    • 2013
  • A novel stick-shaped portable sensing device featuring a microhole array interface between the polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel and water phase was developed for in-situ sensing of perchlorate ions in real water samples. Perchlorate sensitive sensing responses were obtained based on measuring the current changes with respect to the assisted transfer reaction of perchlorate ions by a perchlorate selective ligand namely, bis(dibenzoylmethanato)Ni(II) (Ni(DBM)2) across the polarized microhole array interface. Cyclic voltammetry was used to characterize the assisted transfer reaction of perchlorate ions by the $Ni(DBM)_2$ ligand when using the portable sensing device. The current response for the transfer of perchlorate anions by $Ni(DBM)_2$ across the micro-water/gel interface linearly increased as a function of the perchlorate ion concentration. The technique of differential pulse stripping voltammetry was also utilized to improve the sensitivity of the perchlorate anion detection down to 10 ppb. This was acquired by preconcentrating perchlorate anions in the gel layer by means of holding the ion transfer potential at 0 mV (vs. Ag/AgCl) for 30 s followed by stripping the complexed perchlorate ion with the ligand. The effect of various potential interfering anions on the perchlorate sensor was also investigated and showed an excellent selectivity over $Br^-$, $NO_2{^-}$, $NO_3{^-}$, $CO{_3}^{2^-}$, $CH_3COO^-$ and $SO{_4}^{2^-}$ ions. As a final demonstration, some regional water samples from the Sincheon river in Daegu city were analyzed and the data was verified with that of ion chromatography (IC) analysis from one of the Korean-certified water quality evaluation centers.

Manufacturing of Three-dimensional Micro Structure Using Proton Beam (양성자 빔을 이용한 3차원 마이크로 구조물 가공)

  • Lee, Seonggyu;Kwon, Won Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • The diameter of a proton beam emanating from the MC-50 cyclotron is about 2-3 mm with Gaussian distribution. This widely irradiated proton beam is not suitable for semiconductor etching, precise positioning, and micromachining, which require a small spot. In this study, a beam cutting method using a microhole is proposed as an economical alternative. We produced a microhole with aspect ratio, average diameter, and thickness of 428, $21{\mu}m$, and 9 mm, respectively, for cutting the proton beam. By using this high-aspect-ratio microhole, we conducted machinability tests on microstructures with sizes of tens of ${\mu}m$. Additionally, the results of simulation using GEANT4 and those of the actual experiment were compared and analyzed. The outcome confirmed the possibility of implementing a micro process technology for the fabrication of three-dimensional microstructures of 20 micron units using the MC-50 cyclotron with the microhole.