DOI QR코드

DOI QR Code

Manufacturing of Three-dimensional Micro Structure Using Proton Beam

양성자 빔을 이용한 3차원 마이크로 구조물 가공

  • Lee, Seonggyu (Dept. of Mechanical and Information Engineering, Univ. of Seoul) ;
  • Kwon, Won Tae (Dept. of Mechanical and Information Engineering, Univ. of Seoul)
  • 이성규 (서울시립대학교 기계정보공학과) ;
  • 권원태 (서울시립대학교 기계정보공학과)
  • Received : 2014.07.16
  • Accepted : 2015.01.19
  • Published : 2015.04.01

Abstract

The diameter of a proton beam emanating from the MC-50 cyclotron is about 2-3 mm with Gaussian distribution. This widely irradiated proton beam is not suitable for semiconductor etching, precise positioning, and micromachining, which require a small spot. In this study, a beam cutting method using a microhole is proposed as an economical alternative. We produced a microhole with aspect ratio, average diameter, and thickness of 428, $21{\mu}m$, and 9 mm, respectively, for cutting the proton beam. By using this high-aspect-ratio microhole, we conducted machinability tests on microstructures with sizes of tens of ${\mu}m$. Additionally, the results of simulation using GEANT4 and those of the actual experiment were compared and analyzed. The outcome confirmed the possibility of implementing a micro process technology for the fabrication of three-dimensional microstructures of 20 micron units using the MC-50 cyclotron with the microhole.

MC-50 사이클로트론에서 방출되는 양성자 빔은 직경이 2-3 mm 의 가우시안 분포를 가진다. 이렇게 넓게 조사되는 양성자 빔은 작은 스팟과 정밀한 위치정밀도를 요구하는 반도체 식각, 마이크로 머시닝 등에는 사용될 수 없다. 본 연구에서는 좀 더 경제적인 대안으로 양성자 빔을 마이크로 홀에 통과시켜 수십 ${\mu}m$ 의 직경을 가지도록 조형하는 방법을 제시하였다. 양성자 빔의 조형을 위하여 평균 직경 $21{\mu}m$, 두께 9mm 의 세장비 428 의 마이크로 홀을 제작하였다. 마이크로 홀과 양성자 빔을 정밀하게 정렬하여 양성자 빔을 조형하였다. 이렇게 조형된 양성자 빔을 이용하여 수십 ${\mu}m$ 크기의 마이크로 구조물의 가공성 확인 실험을 실시하였다. 또한 GEANT4 를 이용한 전산모사를 이용하여 해석한 후, 실험결과와 비교하고 분석하였다. 본 연구를 통하여 MC-50 사이클로트론이 조형 장치와 함께 20 마이크론 대의 3 차원 구조물 제작을 위한 마이크로 공정기술에의 사용 가능성을 확인하였다.

Keywords

References

  1. Kim, H. B. and Hobler, G., 2007, "Ion Beam Induced Micro/Nano Fabrication: Shape Fabrication," Jour. of the KSPE, Vol. 24, No. 10, pp.109-116.
  2. Kim, S., Chung, D. K., Kim, B. H., Oh, K. H., Jeong, S. and Chu, C. N., 2009, "Micromachining Using Hybrid of Laser Beam and Electrical Discharge Machining," Jour. of the KSPE, Vol. 26, No. 10, pp. 108-115.
  3. Kim, J. G., Lee, J. J., Cho, S. H., Choi, D. S. and Lee, E. S., 2008, "Nano-machining Technology Using Electron Beam," Jour. of the KSPE, Vol. 25, No. 3, pp.7-14.
  4. Uchiya, N., Harada, T., Murai, M., Nishikawa, H., Haga, J., Sato, T., Ishii, Y. and Kamiya, T., 2007, "Micro-machining of Resists on Silicon by Proton Beam Writing," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 260, Issue 1, pp. 405-408. https://doi.org/10.1016/j.nimb.2007.02.053
  5. Zhang, D., 2009, "Surface Modification for the Perfluorosulfonate Proton-conducting Electrolyte Membrane," Applied Surface Science, Vol. 255, Issue 7, pp. 4119-4122. https://doi.org/10.1016/j.apsusc.2008.10.106
  6. Meyer, J., Bluett, J., Amos, R., Levy, L., Choi, S., Nguyen, QN., Zhu, XR., Gillin, M. and Lee, A., 2010, "Spot Scanning Proton Beam Therapy for Prostate Cancer: Treatment Planning Technique and Analysis of Consequences of Rotational and Translational Alignment Errors," Inter J Radiat Oncol Biol Phys, Vol. 78, No. 2, pp. 428-434. https://doi.org/10.1016/j.ijrobp.2009.07.1696
  7. Roberts, A. and Bibra, M. L., 1996, "Fabrication of Buried Channel Waveguides in Fused Silica Using Focused MeV Proton Beam Irradiation," Jour. of the Lightwave Tech., Vol. 14, No. 11, pp. 2554-2557. https://doi.org/10.1109/50.548154
  8. Hofmann, D., 1988, "Quadrupole-doublet with Permanent Magnets for Proton Beam Focusing," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 30, Issue 4, pp. 607-608. https://doi.org/10.1016/0168-583X(88)90140-1
  9. Nishiuchi, M., Daito, I., Ikegami, M., Daido, H., Mori, M., Orimo, S., Ogura, K., Sagisaka, A., Yogo, A., Pirozhkov, A. S., Sugiyama, H., Kiriyama, H., Okada, H., Kanazawa, S., Kondo, S., Shimomura, T., Tanoue, M., Nakai, Y., Sasao, H., Wakai, D., Sakaki, H., Bolton, P., Choi, I. W., Sung, J. H., Lee, J., Oishi, Y., Fujii, T., Nemoto, K., Souda, H., Noda, A., Iseki, Y. and Yoshiyuki, T., 2009, "Focusing and Spectral Enhancement of a Repetition-rated, Laser-driven, Divergent Multi-MeV Proton Beam Using Permanent Quadrupole Magnets," Appl. Phys. Lett., Volume 94, Issue 6, 061107. https://doi.org/10.1063/1.3078291
  10. Jung, J. H., Lee, H. W. and Kwon, W. T., 2009, "Determination of the Optimal Machining Condition to Maximize the Aspect Ratio of the Micro Hole in EDM Process," 2009 Spring conference of the KSPE, pp. 147-154.
  11. Seo, D. W., Park, M. S., Yi, S. M. and Chu, C. N., 2007, "Machining Characteristics of micro-EDMed Holes According to Dielectric Fluid, Capacitance and Ultrasonic vibrations," Jour. of the KSPE, Vol. 24, No. 12, pp. 42-49.
  12. Jahan, M. P., Wong , Y. S. and Rahman, M., 2009, "A Study on the Quality Micro-hole Machining of Tungsten Carbide by Micro-EDM Process Using Transistor and RC-type pulse Generator," Jour. of Mater. Proc. Tech., Vol. 209, Issue 4, pp. 1706-1716. https://doi.org/10.1016/j.jmatprotec.2008.04.029
  13. Kim, G. M., Kim, B. H. and Chu, C. N., 1999, "Machining Rate and Electrode Wear Characteristics in Micro-EDM of Micro-hole," Jour. of the KSPE, Vol. 16, No. 10, pp. 94-100.

Cited by

  1. The Development of a beam profile monitoring system for improving the beam output characteristics vol.19, pp.11, 2015, https://doi.org/10.6109/jkiice.2015.19.11.2689