• Title/Summary/Keyword: Microbial products

Search Result 856, Processing Time 0.022 seconds

Characteristics of Composting of Castor Oil Cake Mixed with Waste from KimChi Factory and Its Influence on Lettuce Growth (김치공장부산물처리에 따른 아주까리유박의 퇴비화특성 및 시비효과)

  • Kim, Young-Sun;Lee, Tae-Soon;An, Ji-Ye;Song, Hye-Yeon;Chung, Young-Bae;Cho, Sung-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.49-57
    • /
    • 2017
  • The consumption of KimChi, which Korean are a favorite food, has dramatically increased by changes of life style and waste as by-products in KimChi factory. This study was conducted to evaluate an effect of compost of caster oil cake (COC) mixed with waste from KimChi factory (KWF) and its growth effect of lettuce. Treatments were consisted of 4 treatments as COC compost (60% COC+40% sawdust) as control, control+35% KWF (K-1), control+50% KWF (K-2), and control+65% KWF (K-3). Temperature, pH, O.M. and microbial phase of COC composts blended various ratios of KWF or free were unaffected. It was appeared that nitrogen content of KWF treatments was higher, but the ratio of organic matter and nitrogen was lower than the control. Although KWF treatments were acceptable compost under the guideline of Korean, NaCl content of K-3 was 1.91%, and it was very higher than that of others. In comparison with fresh weight and dry weight of lettuce, K-1 and K-3 were similar to control. These results indicated that the waste from KimChi factory was possible to use the composting raw blended materials below 35% mixtures.

Characterization of Microorganisms in Eoyukjang (어육장의 미생물학적 특성)

  • Oh, Eu-Jin;Oh, Mi-Hwa;Lee, Jong-Mee;Cho, Mi-Sook;Oh, Sang-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.656-660
    • /
    • 2008
  • Fermented soybean foods are an important component of the Korean diet. Eoyukjang is a type of traditional fermented soybean source. Microbial analysis of eoyukjang was conducted during the fermentation period in this study. Microorganisms isolated from eoyukjang were identified by biochemical tests and 16S rDNA sequencing. 17 different microorganisms, including bacteria, yeast, and fungi were detected in eoyukjang during the fermentation period. Even though Aspergillus participated in the early stage of fermentation of eoyukjang, Bacillus species and Saccharomyces cerevisiae were the major microzymes in eoyukjang throughout the maturation period. Eoyukjang is generally consumed after the boiling of the final sample. Therefore, the final sample of eoyukjang was boiled and analyzed. Our results showed that no vegetative microorganisms survived under the boiling conditions for eoyukjang. Fermented soybean products in the domestic market were also assessed for comparison with the results from eoyukjang. The total cell number of kanjang (soy sauce) samples was between 0 to 42 CFU/mL. The isolated microorganisms were identified as Bacillus species. All Bacillus isolates were not found to harbor the three enterotoxin-producing and emetic toxin-producing genes.

Development of Metabolic Engineering Strategies for Microbial Platform to Produce Bioplastics (바이오플라스틱 생산 미생물 플랫폼 제작을 위한 대사공학 전략 개발)

  • Park, Si Jae;David, Yokimiko;Baylon, Mary Grace;Hong, Soon Ho;Oh, Young Hoon;Yang, Jung Eun;Choi, So Young;Lee, Seung Hwan;Lee, Sang Yup
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • As the concerns about environmental problems, climate change and limited fossil resources increase, bio-based production of chemicals and polymers from renewable resources gains much attention as one of the promising solutions to deal with these problems. To solve these problems, much effort has been devoted to the development of sustainable process using renewable resources. Recently, many chemicals and polymers have been synthesized by biorefinery process and these bio-based chemicals and plastics have been suggested as strong candidates to substitute petroleum-based products. In this review, we discuss current advances on the development of metabolically engineered microorganisms for the efficient production of bio-based chemicals and polymers.

The Application of Nanoliposome Composed of Ceramide as an Anti-irritant in Cosmetics (세라마이드를 구성성분으로 하는 나노리포좀의 응용 - 화장품에서의 자극완화제)

  • Jo Byoung Kee;Ahn Gi Woong;Shin Bong Soo;Jeong Ji Hean;Park Hae-Ryong;Hwang Yong-Il
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.267-272
    • /
    • 2005
  • The objective of this study is to suggest the potentialities of nanoliposome composed of ceramide as an anti-irritant against various irritants used in cosmetics. Ceramides are major structural components of the epidermal permeability barrier, which is known to play an essential part in human physiology by not only preventing the loss of water from the body but also protecting the body from external physical, chemical, and microbial insults. According to the results, better effects on reinforcement of skin barrier function and anti-irritation were obtained with nanoliposome composed of ceramide than with dispersed ceramide. And, we performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse to evaluate the influence of nanoliposome composed of ceramide on the skin penetration of lactic acid in formulations. From the results, we found that the anti-irritation effects of nanoliposome containing ceramide were due to reduced penetration rate of irritants. Conclusively, we could develop a new anti-irritation system and apply this nanoliposome composed of ceramide to the final cosmetic products successfully.

Study on Reducing Methods of Natural Food-borne Pathogenic Microorganisms Originated from Saengshik (생식 중 자연환경유래 위해미생물 저감화 방법에 관한 연구)

  • Chang, Tae-Eun;Han, Jeong-Su;Song, Ok-Ja;Chung, Dong-Hwa;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.1020-1025
    • /
    • 2004
  • In previous paper, contaminations of food-borne pathogenic bacteria of Saengshik was found to occur during processing, because detection rates of food-borne pathogenic bacteria in final products were higher than those of raw materials. In this study, methods to reduce food-borne pathogenic bacteria and improved manufacturing process were developed for microbial safety of Saengshik. Food-borne pathogenic bacteria in raw materials were reduced to about 0.5-2.0 log cfu/g when seven kinds of raw materials were washed with electrolyzed water and ozonated water, but food-borne pathogenic bacteria could not be removed completely. After improvement of manufacturing process, numbers of food-borne pathogenic bacteria were same or decreased to levels of raw materials. Gaseous ozone and Biocon could control air-borne bacteria under $1{\times}10^1$ cfu/1000 L of air in pulverization and mixing rooms.

Hazard Analysis and Determination of CCPs for Powdered Raw Grains and Vegetables, Saengshik (생식의 위해요인 분석 및 중요관리점 설정)

  • Kim, Dong-Ju;Ha, Sang-Do;Ryu, Kyung;Park, Ki-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.1032-1040
    • /
    • 2004
  • Biological, physical, and chemical hazards in raw manufacturing processes of Saengshik, powdered raw grains and vegetables, were analyzed to identify critical control points (CCPs). In raw materials, total plate and coliform counts ranged 2.82-8.23 and $1.40-6.57\;{\log}_{10}\;CFU/g$, respectively. In final products, total plate counts, except for Lactobacillus spp., were $1.51-7.40\;{\log}_{10}\;CFU/g$. During processing steps, both total plate and coliform counts decreased after washing, whereas no changes were observed after freeze-drying. Physical hazards, such as contents of metal and other contaminants, and chemical hazards, such as moisture content, were assessed. Suggested CCPs for Saengshik were: washing process for controlling microbial contamination, freeze-drying process for controlling moisture content to prevent deterioration and growth of microorganisms, and pulverization process for controlling contamination of foreign substances such as metals. These results will provide guideline to apply HACCP system standards to this product.

Effect of Microwave Treatment and Packaging Methods on Extending the Shelf-Life of RTE Rice Balls at Room Temperature (상온 보관 주먹밥의 유통연장을 위한 마이크로파 살균기술 및 포장기술에 관한 연구)

  • Bae, Young-Min;Lee, Sun-Young
    • Korean journal of food and cookery science
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2010
  • Although the demand of ready-to-eat (RTE) foods such as Kimbab is growing, large quantities and wide distribution of these foods is difficult due to their short shelf-life, exposed packaging with hygienic risk, and decreased quality at refrigerator temperatures. This study was undertaken to develop preservation and storage methods to extend the shelf-life of RTE rice products using microwave and packaging methods such as vacuum and modified atmosphere packages. RTE rice ball samples inoculated with Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus or Bacillus cereus were microwave treated for 0, 30, 60, 90 and 120 seconds. Populations of pathogens on the rice balls were significantly reduced with an increase in treatment time. There were more than 5 log reductions of all pathogens when the samples were microwave treated for 60 seconds. RTE rice balls inoculated with two pathogens (S. aureus and B. cereus) were packaged via air, vacuum, $N_2$ gas, and $CO_2$ gas following microwave treatment for 90 seconds. The initial S. aureus and B. cereus concentration before treatment was 7.60 and 6.59 log CFU/g, and these levels were reduced by 3.37 and 2.18 log CFU/g after microwave treatment. The levels of pathogens were significantly increased during storage time at room temperature. $CO_2$ packaging was the most effective at inhibiting microbial growth among the tested packaging methods. The levels of total mesophilic count, S. aureus and B. cereus after 5 days of storage were 7.7, 8.8 and 9.3 log CFU/g in air packaged samples and 2.4, 3.2 and 8.3 log CFU/g in $CO_2$ gas packaged samples, respectively. However, after 3 days of storage higher levels of B. cereus were observed in all samples, indicating that the samples were not safe to be consumed. Base on these results, microwave treatment and MAP packaging methods using $CO_2$ gas could be used as a potential method for extending the shelf-life of RTE foods.

The Manufacturing of Low-fat Hamburger Patties Added Organic Vegetable (친환경 유기농 채소가 첨가된 저지방 햄버거 패티의 제조)

  • Chung, Ku-Young;Chung, Eui-Ryung;Lee, Joo-Yeon
    • Food Science of Animal Resources
    • /
    • v.28 no.2
    • /
    • pp.165-170
    • /
    • 2008
  • In this study, the physicochemical, microbial, and sensory properties of law-fat hamburger patties during storage for 25 days at $7{\pm}1^{\circ}C$ were investigated. The law-fat hamburger patties were manufactured by three different packing methods (control: added with 10% lard regular-fat patty, T1: added with 10% lard and organic vegetable of regular-fat patty, T2: added with 3% olive oil of vegetability low-fat patty, T3: added with 3% lard of low-fat patty). The pH of all treated samples increased as the storage time increased, and then decreased after 15 days of storage. The low-fat hamburger patty added with organic olive oil (T2) showed significantly higher pH (p<0.05) compared with other treatments (T1 and T3). The TBARS values of the all treated samples tended to increase after 5 days of storage, and then significant quality loss was observed after 15 days of storage period for the control (T1). However, the samples of the vegitability low-fat patty added organic olive oil had longer shelf-life than the control. The total bacterial counts were 7 log CFU/g after 15 days and 20 days of storage for the control and treatments, respectively. The results of this study showed that the storage period of the treatments was slightly extended compared with the control. Low-fat hamburger patties showed no differences for overall acceptability between control and other patties.

The Distribution of Indicator Organisms and Incidence of Pathogenic Bacteria in Raw Pork Material Used for Korean Pork Jerky (한국형 육포제조를 위한 원료 돈육의 미생물 분포 및 병원성 미생물의 확인)

  • Kim, Hyoun-Wook;Kim, Hye-Jung;Kim, Tae-Hoon;Kim, Tae-Im;Lee, Joo-Yeon;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.1
    • /
    • pp.76-81
    • /
    • 2008
  • The objective of this study is to evaluate the microbial safety of raw pork used to produce Korean pork jerky. The raw pork samples harbored large populations of microorganisms. In particular, mesophilic bacteria were found to be most numerous $(3.9{\times}10^2-3.9{\times}10^5cfu/g)$ in the samples. Spore-forming bacteria and coliforms were not detected below detection limit. Yeast and molds were detected at $3.8{\times}10^1-5.1{\times}10^2cfu/g$ in the raw pork. Ten samples of raw pork were analyzed for the presence of pathogenic bacteria. Bacillus cereus was isolated from samples B and J and Staphylococcus aureus was isolated from sample B. The B. cereus isolates from raw pork samples were identified with 99.8% agreement and S. aureus isolate was identified with 97.8% agreement according to the API CHB 50 kit.

Isolation of indigenous Lactobacillus plantarum for malolactic fermentation (말로락틱 발효에 적합한 토착 Lactobacillus plantarum 분리)

  • Heo, Jun;Lee, Chan-Mi;Park, Moon Kook;Jeong, Do-Youn;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.169-176
    • /
    • 2015
  • The malolactic fermentation (MLF), which is widely used in winemaking, is the conversion of malic acid to lactic acid conducted by the malolactic enzyme (Mle) of lactic acid bacteria. In order to select the strains with MLF among 54 lactic acid bacteria isolated from the traditionally fermented foods, we designed a primer set that specifically targets the conserved regions of the mle gene and then selected four strains that harbor the mle gene of Lactobacillus plantarum. All strains were identified as L. plantarum by analyzing the 16S rRNA sequences, biochemical properties, and the PCR products of the recA gene. From comparison of the mle gene sequences consisting of 1,644 bp, the nucleotide and amino acid sequence of strain JBE60 correspond to 96.7% and 99.5% with those of other three strains, respectively. The strain JBE60 showed the highest resistant against 10% (v/v) ethanol among the strains. The strains lowered the concentration of malic acid to average 43%. Considering the ethanol resistance and conversion of malic acid, the strain JBE60 is considered as a potential starter for the malolactic fermentation.