DOI QR코드

DOI QR Code

Isolation of indigenous Lactobacillus plantarum for malolactic fermentation

말로락틱 발효에 적합한 토착 Lactobacillus plantarum 분리

  • Heo, Jun (Department of Biological Sciences, Chonbuk National University) ;
  • Lee, Chan-Mi (Department of Biological Sciences, Chonbuk National University) ;
  • Park, Moon Kook (Department of Biological Sciences, Chonbuk National University) ;
  • Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Uhm, Tai-Boong (Department of Biological Sciences, Chonbuk National University)
  • 허준 (전북대학교 자연과학대학 생명과학과) ;
  • 이찬미 (전북대학교 자연과학대학 생명과학과) ;
  • 박문국 (전북대학교 자연과학대학 생명과학과) ;
  • 정도연 ((재)발효미생물산업진흥원) ;
  • 엄태붕 (전북대학교 자연과학대학 생명과학과)
  • Received : 2015.06.02
  • Accepted : 2015.06.19
  • Published : 2015.06.30

Abstract

The malolactic fermentation (MLF), which is widely used in winemaking, is the conversion of malic acid to lactic acid conducted by the malolactic enzyme (Mle) of lactic acid bacteria. In order to select the strains with MLF among 54 lactic acid bacteria isolated from the traditionally fermented foods, we designed a primer set that specifically targets the conserved regions of the mle gene and then selected four strains that harbor the mle gene of Lactobacillus plantarum. All strains were identified as L. plantarum by analyzing the 16S rRNA sequences, biochemical properties, and the PCR products of the recA gene. From comparison of the mle gene sequences consisting of 1,644 bp, the nucleotide and amino acid sequence of strain JBE60 correspond to 96.7% and 99.5% with those of other three strains, respectively. The strain JBE60 showed the highest resistant against 10% (v/v) ethanol among the strains. The strains lowered the concentration of malic acid to average 43%. Considering the ethanol resistance and conversion of malic acid, the strain JBE60 is considered as a potential starter for the malolactic fermentation.

말로락틱 발효(MLF)은 유산균의 말로락틱 효소(Mle)에 의해 malic acid가 lactic acid로 전환되는 과정으로 와인 제조에 널리 사용된다. 전통 발효 식품으로부터 54개의 유산균을 분리한 다음 MLF 특성을 가진 균주를 선발하기 위해 Lactobacillus plantarum mle 유전자 서열의 보존 영역에 대한 primer 쌍을 제작했고, PCR을 통해 이 유전자를 함유한 4 종의 균주를 선발하였다. 선발된 균주들의 16S rRNA 염기서열과 생화학적 특성, rec gene 영역의 PCR을 수행하여 동정한 결과 Lactobacillus plantarum으로 모두 동정되었다. 1,644 bp로 구성된 이들 mle 유전자의 분석 결과 JBE60 균주의 염기 서열은 JBE150, JBE160, JBE171 균주들과 96.7%, 아미노산 서열로는 99.5%가 일치했다. 에탄올 저항성을 확인한 결과 JBE60 균주가 10% 에탄올에 대한 저항성이 가장 높았다. MLF 활성을 확인한 결과 이들 균주는 평균 43%의 malic acid 감소를 보였으며 균주 간 분해율은 비슷했다. 이러한 결과로부터 JBE60 균주가 와인용 MLF 종균으로 이용 될 수 있을 것으로 보인다.

Keywords

References

  1. Bauer, R. and Dicks, L.M.T. 2004. Control of malolactic fermentation in wine. A review. S. Afr. J. Enol. Vitic. 25, 74-88.
  2. Bautista-Gallego, J., Arroyo-Lopez, F.N., Rantsiou, K., Jimenez-Diaz, R., Garrido-Fernandez, A., and Cocolin, L. 2013. Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Research International 50, 135-142. https://doi.org/10.1016/j.foodres.2012.10.004
  3. Carrascosa, A.V. and Munoz, R. 2011. Molecular wine microbiology. Elsevier.
  4. Chang, E.H., Jeong, S.T., Jeong, S.M., Lim, B.S., Noh, J.H., Park, K.S., Park, S.J., and Choi, J.U. 2011. Deacidification effect of Campbell Early must through carbonic-maceration treatment: isolation and properties of the bacteria associated with deacidification. Kor. J. Food Preserv. 18, 973-979. https://doi.org/10.11002/kjfp.2011.18.6.973
  5. Cho, G.S., Huch, M., and Franz, C.M. 2011. Development of a quantitative PCR for detection of Lactobacillus plantarum starters during wine malolactic fermentation. J. Microbiol. Biotechnol. 21, 1280-1286. https://doi.org/10.4014/jmb.1107.07003
  6. Choi, S.H., Hong, Y.A., Choi, Y.J., and Park, H.D. 2011. Identification and characterization of wild yeasts isolated from Korean domestic grape varieties. Kor. J. Food Preserv. 18, 604-611. https://doi.org/10.11002/kjfp.2011.18.4.604
  7. Curk, M.C., Hubert, J.C., and Bringel, F. 1996. Lactobacillus paraplantarum sp. nov., a new species related to Lactobacillus plantarum. Int. J. Syst. Bacteriol. 46, 595-598. https://doi.org/10.1099/00207713-46-2-595
  8. Davis, C.R., Wibowo, D., Eschenbruch, R., Lee, T.H., and Fleet, G.H. 1985. Practical implications of malolactic fermentation: a review. Am. J. Enol. Vitic. 36, 290-301.
  9. Du Toit, M., Engelbrecht, L., Lerm, E., and Krieger-Weber, S. 2011. Lactobacillus: the next generation of malolactic fermentation starter cultures-an overview. Food Bioprocess Technol. 4, 876-906. https://doi.org/10.1007/s11947-010-0448-8
  10. Eva, G., Lopez, I., Ruiz, J.I., Saenz, J., Fernandez, E., Zarazaga, M., Dizy M., and Torres C.Ruiz-Larrea, F. 2004. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol. 230, 53-61. https://doi.org/10.1016/S0378-1097(03)00854-1
  11. Fleet, G.H., Lafon-Lafourcade, S., and Ribereau-Gayon, P. 1984. Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl. Environ. Microbiol. 48, 1034-1038.
  12. Heo, J., Ryu, M.S., Jeon, S.B., Oh, H.H., Jeong, D.Y., and Uhm, T.B. 2014. Characterization of Lactobacillus brevis JBE 30 as a starter for the brewing of traditional liquor. Korean J. Microbiol. 50, 233-238. https://doi.org/10.7845/kjm.2014.4065
  13. Herrero, M., De la Roza, C., Garcia, L.A., and Diaz, M. 1999. Simultaneous and sequential fermentations with yeast and lactic acid bacteria in apple juice. J. Ind. Microbiol. Biotechnol. 22, 48-51. https://doi.org/10.1038/sj.jim.2900599
  14. Jacobson, J.L. 2006. Introduction to wine laboratory practices and procedures, pp. 188-191. Springer Science & Business Media.
  15. Kang, S.D., Ko, Y.J., Kim, E.J., Son, Y.H., Kim, J.Y., Seol, H.G., Kim, I.J., Cho, H.K., and Ryu, C.H. 2011. Quality characteristics of Kiwi wine and optimum malolactic fermentation conditions. J. Life Sci. 21, 509-514. https://doi.org/10.5352/JLS.2011.21.4.509
  16. Kim, Y.S., Jeong, D.Y., Hwang, Y.T., and Uhm, T.B. 2011a. Bacterial community profiling during the manufacturing process of traditional soybean paste by pyrosequencing method. Korean J. Microbiol. 47, 275-280.
  17. Kim, Y.S., Jeong, D.Y., and Shin, D.H. 2008. Optimum fermentation conditions and fermentation characteristics of mulberry (Morus alba) wine. Kor. J. Food Sci. Technol. 40, 63-69.
  18. Kim, E.J., Kim, Y.H., Kim, J.W., Lee, H.H., Ko, Y.J., Park, M.H., Lee, J.O., Kim, Y.S., Ha, Y.L., and Ryu, C.H. 2007. Optimization of fermentation process and quality properties of wild grape wine. J. Kor. Soc. Food Sci. Nutr. 36, 366-370. https://doi.org/10.3746/jkfn.2007.36.3.366
  19. Kim, Y.S, Kim, M.C., Kwon, S.W., Kim S.J., Park, I.C., Ka, J.O., Weon, H.Y. 2011b. Analysis of bacterial communities in meju, Korean traditional fermented soybean bricks, by cultivation based and pyrosequencing methods. J. Microbiol. 49, 340-348. https://doi.org/10.1007/s12275-011-0302-3
  20. Kim, J.H., Son, C.S., Shin, J.Y., Kim, S.H., and Yang, J.Y. 2014. Preparation and characterization of black garlic wine. Food Eng. Prog. 18, 210-214. https://doi.org/10.13050/foodengprog.2014.18.3.210
  21. Lerm, E., Engelbrecht, L., and Du Toit, M. 2010. Malolactic fermentation: the ABC's of MLF. S. Afr. J. Enol. Vitic. 31, 186-212.
  22. Liu, S.Q. 2002. Malolactic fermentation in wine-beyond deacidification. J. Appl. Microbiol. 92, 589-601. https://doi.org/10.1046/j.1365-2672.2002.01589.x
  23. Ni, K., Wang, Y., Li, D., Cai, Y., and Pang, H. 2015. Characterization, identification and application of lactic acid bacteria isolated from forage paddy rice silage. PLoS One 10, 1-14.
  24. Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512-526.
  25. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  26. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  27. Torriani, S., Felis, G.E., and Dellaglio, F. 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 67, 3450-3454. https://doi.org/10.1128/AEM.67.8.3450-3454.2001
  28. Ugliano, M., Genovese, A., and Moio, L. 2003. Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J. Agric. Food Chem. 51, 5073-5078. https://doi.org/10.1021/jf0342019
  29. Yoo, K.S. 2013. Ph. D. thesis. Chungbuk National University, Korea.
  30. Yoo, K.S., Kim, J.E., Seo, E.Y., Kim, Y.J., Choi, H.Y., Yoon, H.S., Kim, M.D., and Han, N.S. 2010. Improvement in sensory characteristics of Campbell Early wine by adding dual starters of Saccharomyces cerevisiae and Oenococcus oeni. J. Microbiol. Biotechnol. 20, 1121-1127. https://doi.org/10.4014/jmb.1003.03034
  31. Zanoni, P., Farrow, J.A., Phillips, B.A., and Collins, M.D. 1987. Lactobacillus pentosus (Fred, Peterson, and Anderson) sp. nov., nom. rev. Int. J. Syst. Bacteriol. 37, 339-341. https://doi.org/10.1099/00207713-37-4-339
  32. Zhang, Z., Schwarz, S., Wagner, L., and Miller, W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203-214. https://doi.org/10.1089/10665270050081478