Browse > Article
http://dx.doi.org/10.7845/kjm.2015.5022

Isolation of indigenous Lactobacillus plantarum for malolactic fermentation  

Heo, Jun (Department of Biological Sciences, Chonbuk National University)
Lee, Chan-Mi (Department of Biological Sciences, Chonbuk National University)
Park, Moon Kook (Department of Biological Sciences, Chonbuk National University)
Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI))
Uhm, Tai-Boong (Department of Biological Sciences, Chonbuk National University)
Publication Information
Korean Journal of Microbiology / v.51, no.2, 2015 , pp. 169-176 More about this Journal
Abstract
The malolactic fermentation (MLF), which is widely used in winemaking, is the conversion of malic acid to lactic acid conducted by the malolactic enzyme (Mle) of lactic acid bacteria. In order to select the strains with MLF among 54 lactic acid bacteria isolated from the traditionally fermented foods, we designed a primer set that specifically targets the conserved regions of the mle gene and then selected four strains that harbor the mle gene of Lactobacillus plantarum. All strains were identified as L. plantarum by analyzing the 16S rRNA sequences, biochemical properties, and the PCR products of the recA gene. From comparison of the mle gene sequences consisting of 1,644 bp, the nucleotide and amino acid sequence of strain JBE60 correspond to 96.7% and 99.5% with those of other three strains, respectively. The strain JBE60 showed the highest resistant against 10% (v/v) ethanol among the strains. The strains lowered the concentration of malic acid to average 43%. Considering the ethanol resistance and conversion of malic acid, the strain JBE60 is considered as a potential starter for the malolactic fermentation.
Keywords
Lactobacillus plantarum; lactic acid bacteria; malolactic fermentation; mle gene; traditional fermented food;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Bauer, R. and Dicks, L.M.T. 2004. Control of malolactic fermentation in wine. A review. S. Afr. J. Enol. Vitic. 25, 74-88.
2 Bautista-Gallego, J., Arroyo-Lopez, F.N., Rantsiou, K., Jimenez-Diaz, R., Garrido-Fernandez, A., and Cocolin, L. 2013. Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Research International 50, 135-142.   DOI
3 Carrascosa, A.V. and Munoz, R. 2011. Molecular wine microbiology. Elsevier.
4 Chang, E.H., Jeong, S.T., Jeong, S.M., Lim, B.S., Noh, J.H., Park, K.S., Park, S.J., and Choi, J.U. 2011. Deacidification effect of Campbell Early must through carbonic-maceration treatment: isolation and properties of the bacteria associated with deacidification. Kor. J. Food Preserv. 18, 973-979.   DOI
5 Cho, G.S., Huch, M., and Franz, C.M. 2011. Development of a quantitative PCR for detection of Lactobacillus plantarum starters during wine malolactic fermentation. J. Microbiol. Biotechnol. 21, 1280-1286.   DOI
6 Choi, S.H., Hong, Y.A., Choi, Y.J., and Park, H.D. 2011. Identification and characterization of wild yeasts isolated from Korean domestic grape varieties. Kor. J. Food Preserv. 18, 604-611.   DOI
7 Curk, M.C., Hubert, J.C., and Bringel, F. 1996. Lactobacillus paraplantarum sp. nov., a new species related to Lactobacillus plantarum. Int. J. Syst. Bacteriol. 46, 595-598.   DOI
8 Davis, C.R., Wibowo, D., Eschenbruch, R., Lee, T.H., and Fleet, G.H. 1985. Practical implications of malolactic fermentation: a review. Am. J. Enol. Vitic. 36, 290-301.
9 Du Toit, M., Engelbrecht, L., Lerm, E., and Krieger-Weber, S. 2011. Lactobacillus: the next generation of malolactic fermentation starter cultures-an overview. Food Bioprocess Technol. 4, 876-906.   DOI
10 Eva, G., Lopez, I., Ruiz, J.I., Saenz, J., Fernandez, E., Zarazaga, M., Dizy M., and Torres C.Ruiz-Larrea, F. 2004. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol. 230, 53-61.   DOI
11 Fleet, G.H., Lafon-Lafourcade, S., and Ribereau-Gayon, P. 1984. Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl. Environ. Microbiol. 48, 1034-1038.
12 Heo, J., Ryu, M.S., Jeon, S.B., Oh, H.H., Jeong, D.Y., and Uhm, T.B. 2014. Characterization of Lactobacillus brevis JBE 30 as a starter for the brewing of traditional liquor. Korean J. Microbiol. 50, 233-238.   DOI
13 Herrero, M., De la Roza, C., Garcia, L.A., and Diaz, M. 1999. Simultaneous and sequential fermentations with yeast and lactic acid bacteria in apple juice. J. Ind. Microbiol. Biotechnol. 22, 48-51.   DOI
14 Jacobson, J.L. 2006. Introduction to wine laboratory practices and procedures, pp. 188-191. Springer Science & Business Media.
15 Kang, S.D., Ko, Y.J., Kim, E.J., Son, Y.H., Kim, J.Y., Seol, H.G., Kim, I.J., Cho, H.K., and Ryu, C.H. 2011. Quality characteristics of Kiwi wine and optimum malolactic fermentation conditions. J. Life Sci. 21, 509-514.   DOI   ScienceOn
16 Kim, Y.S., Jeong, D.Y., Hwang, Y.T., and Uhm, T.B. 2011a. Bacterial community profiling during the manufacturing process of traditional soybean paste by pyrosequencing method. Korean J. Microbiol. 47, 275-280.
17 Kim, Y.S., Jeong, D.Y., and Shin, D.H. 2008. Optimum fermentation conditions and fermentation characteristics of mulberry (Morus alba) wine. Kor. J. Food Sci. Technol. 40, 63-69.
18 Kim, J.H., Son, C.S., Shin, J.Y., Kim, S.H., and Yang, J.Y. 2014. Preparation and characterization of black garlic wine. Food Eng. Prog. 18, 210-214.   DOI
19 Kim, E.J., Kim, Y.H., Kim, J.W., Lee, H.H., Ko, Y.J., Park, M.H., Lee, J.O., Kim, Y.S., Ha, Y.L., and Ryu, C.H. 2007. Optimization of fermentation process and quality properties of wild grape wine. J. Kor. Soc. Food Sci. Nutr. 36, 366-370.   DOI
20 Kim, Y.S, Kim, M.C., Kwon, S.W., Kim S.J., Park, I.C., Ka, J.O., Weon, H.Y. 2011b. Analysis of bacterial communities in meju, Korean traditional fermented soybean bricks, by cultivation based and pyrosequencing methods. J. Microbiol. 49, 340-348.   DOI
21 Lerm, E., Engelbrecht, L., and Du Toit, M. 2010. Malolactic fermentation: the ABC's of MLF. S. Afr. J. Enol. Vitic. 31, 186-212.
22 Liu, S.Q. 2002. Malolactic fermentation in wine-beyond deacidification. J. Appl. Microbiol. 92, 589-601.   DOI
23 Ni, K., Wang, Y., Li, D., Cai, Y., and Pang, H. 2015. Characterization, identification and application of lactic acid bacteria isolated from forage paddy rice silage. PLoS One 10, 1-14.
24 Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512-526.
25 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol. Biol. Evol. 28, 2731-2739.   DOI
26 Yoo, K.S. 2013. Ph. D. thesis. Chungbuk National University, Korea.
27 Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI
28 Torriani, S., Felis, G.E., and Dellaglio, F. 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 67, 3450-3454.   DOI
29 Ugliano, M., Genovese, A., and Moio, L. 2003. Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J. Agric. Food Chem. 51, 5073-5078.   DOI   ScienceOn
30 Yoo, K.S., Kim, J.E., Seo, E.Y., Kim, Y.J., Choi, H.Y., Yoon, H.S., Kim, M.D., and Han, N.S. 2010. Improvement in sensory characteristics of Campbell Early wine by adding dual starters of Saccharomyces cerevisiae and Oenococcus oeni. J. Microbiol. Biotechnol. 20, 1121-1127.   DOI
31 Zanoni, P., Farrow, J.A., Phillips, B.A., and Collins, M.D. 1987. Lactobacillus pentosus (Fred, Peterson, and Anderson) sp. nov., nom. rev. Int. J. Syst. Bacteriol. 37, 339-341.   DOI
32 Zhang, Z., Schwarz, S., Wagner, L., and Miller, W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203-214.   DOI