• Title/Summary/Keyword: Microbial metabolites

Search Result 170, Processing Time 0.025 seconds

Effects of Bamboo Powder Supplementation on Growth Performance, Blood Metabolites and Carcass Characteristics of Fattening Pigs and Gas Emission and Microbial Populations in Pig Manure (대나무 분말 첨가가 돼지생산성, 도체특성, 혈액성상, 돈분의 가스발생량 및 미생균 균총에 미치는 영향)

  • Song, Young-Min;Cho, Jae-Hyeon;Chu, Gyo-Moon;Kim, Hoi-Yun;Lee, Jae-Young;Kim, Seung-Cheol;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1429-1436
    • /
    • 2014
  • In this study, we investigated the effects of dietary supplementation (n = 40 pigs/treatment) with bamboo powder (0, 1, 2 and 3%) for 38 days. We evaluated growth performance, blood metabolites, and carcass characteristics of fattening pigs and gas emission and microbial populations in pig manure, to obtain data on pork producers for environmental management. We obtained the following results. First, supplementation with increasing amounts of bamboo powder had a significant (P < 0.05) effect on feed intake, feed efficiency, and glucose contents (except for initial and final body weight, weight gain, carcass characteristics, and blood urea nitrogen). In terms of blood metabolites, glucose and blood urea nitrogen tended to decrease with increasing amounts of bamboo powder. Second, the amounts of ammonia, methane, amine, hydrogen sulfide, and acetic acid were reduced by increasing amounts of bamboo powder when compared with the controls (P < 0.05). However, there were no significant differences in pH, propionic acid, iso-butyric acid, butyric acid, iso-valeric acid, and valeric acid among all treatments. The lowest gas emission was observed when 3% bamboo powder was used. Third, supplementation with increasing amounts of bamboo powder tended (P < 0.05) to increase the total number of bacteria, Lactobacillus spp., and yeast, but E. coli, Salmonella spp., and Shigella spp. were not detected in any treatment. In conclusion, the results of this study suggest that supplementation with bamboo powder was effective in reducing gas emission and inhibiting pathogen populations in pig manure by lowering the pH of the manure.

Flavone Biotransformation by Aspergillus niger and the Characterization of Two Newly Formed Metabolites

  • Mahmoud, Yehia A.-G.;Assawah, Suzan W.;El-Sharkawy, Saleh H.;Abdel-Salam, Amal
    • Mycobiology
    • /
    • v.36 no.2
    • /
    • pp.121-133
    • /
    • 2008
  • Aspergillus niger isolated from Allium sativum was used at large scale fermentation (150 mg flavone/200ml medium) to obtain suitable amounts of the products, efficient for identification. Then spectral analysis (UV, IR, $^1H$-NMR, $^{13}C$-NMR) and mass spectrometry were performed for the two products, which contributed to the identification process. The metabolite (1) was identified as 2'-hydroxydihydrochalcone, and the metabolite (2) was identified as 2'-hydroxyphenylmethylketone, which were more active than flavone itself. Antioxidant activities of the two isolated metabolites were tested compared with ascorbic acid. Antioxidant activity of metabolite (1) was recorded 64.58% which represented 79% of the antioxidant activity of ascorbic acid, and metabolite (2) was recorded 54.16% (67% of ascorbic acid activity). However, the antioxidant activity of flavone was recorded 37.50% which represented 46% of ascorbic acid activity. The transformed products of flavone have anti-microbial activity against Pseudomonas aeruginosa, Aspergillus flavus and Candida albicans, with MIC was recorded $250{\mu}g/ml$ for metabolite (2) against all three organism and 500, 300, and $300{\mu}g/ml$ for metabolite (1) against tested microorganisms (P. aeruginosa, Escherichia coli, Bacillus subtilis, and Klebsiella pneumonia, Fusarium moniliforme, A. flavus, Saccharomyces cerviceae, Kluveromyces lactis and C. albicans) at this order.

Optimization of Red Pigmentation and Effect of the Metabolites Produced by Monascus Strains on Microbial Inhibition and Colorization in Processed Ham (Monascus 균주의 적색색소 생산 특성과 육제품에서의 항균 및 착색 효과)

  • 박시용;마재형;최양일;김동훈;황한준
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.172-178
    • /
    • 1999
  • In this study, we tested possibility of replacing nitrite salts, which were always added during the meat product processing, with the metabolites produced by antimicrobial and red pigment producing Monascus strains. We have already shown that Monascus No. 116 strain has the highest antimicrobial activity among the strains isolated from Ang-Khak. Monascus isolate No. 229 was chosen due to its outstanding red pigment producing ability. The red pigment production by No. 229 was highest in the medium containing 8% sucrose, 2% yeast extract, 0.1% K2HPO4, 0.5% MgSO4. Optimum pH and temperature for the red pigment production were pH 6.2 and 3$0^{\circ}C$, was found in spot or Rf value 0.54 on TLC plate using ethyl acetate-acetone-water (4:4:1, v/v/v) as development solvent system. Isolate No. 116 and No. 229 were cultured in a optimal condition for the antimicrobial activity and red pigmentation. The culture concentrates were applied in situ to the production of instantly processed ham. Mixed application of 89 ppm Na-nitrite and 300 ppm of culture broth concentrate of Monascus isolate No. 116 and 500 ppm of red color produced by Monascus isolate No. 229 showed similar results with the single application of 94 ppm Na-nitrite. These results confirmed that the antimicrobial activity and red pigment of Monascus strains might be valuable to replace Na-nitrite salt in meat processing.

  • PDF

Lactobacillus plantarum Improves the Nutritional Quality of Italian Ryegrass with Alfalfa Mediated Silage

  • Ilavenil, Soundarrajan;Arasu, Mariadhas Valan;Vijayakumar, Mayakrishnan;Jung, Min-Woong;Park, Hyung Soo;Lim, Young Cheol;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.174-178
    • /
    • 2014
  • The present study was planned to analyze the nutritional quality, microbial counts and fermentative acids in Italian ryegrass (IRG) 80% and alfalfa 20% (IRG-HV) mediated silage inoculated with lactic acid bacteria (LAB) as a probiotic strain for 3 months. Crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF), total digestible nutrient (TDN) and In-vitro dry matter digestibility (IVDMD), lactic acid bacteria (LAB), yeast and fungi counts and fermentation metabolites such as lactic acid, acetic acid and butyric acids were analyzed. The result shows that the nutritional quality and metabolite profiles of silage were significantly improved with LAB. For microbial counts, LAB showed dominant followed by yeast as compared with control silage. The pH of the silage also reduced significantly when silage inoculated with LAB. The result confirmed that silage preparation using different crops with L. plantarum inoculation is most beneficial for the farmers.

Corrosion of Copper in Anoxic Ground Water in the Presence of SRB

  • Carpen, L.;Rajala, P.;Bomberg, M.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • Copper is used in various applications in environments favoring and enabling formation of biofilms by naturally occurring microbes. Copper is also the chosen corrosion barrier for nuclear waste in Finland. The copper canisters should have lifetimes of 100,000 years. Copper is commonly considered to be resistant to corrosion in oxygen-free water. This is an important argument for using copper as a corrosion protection in the planned canisters for spent nuclear-fuel encapsulation. However, microbial biofilm formation on metal surfaces can increase corrosion in various conditions and provide conditions where corrosion would not otherwise occur. Microbes can alter pH and redox potential, excrete corrosion-inducing metabolites, directly or indirectly reduce or oxidize the corrosion products, and form biofilms that create corrosive microenvironments. Microbial metabolites are known to initiate, facilitate, or accelerate general or localized corrosion, galvanic corrosion, and intergranular corrosion, as well as enable stress-corrosion cracking. Sulfate-reducing bacteria (SRB) are present in the repository environment. Sulfide is known to be a corrosive agent for copper. Here we show results from corrosion of copper in anoxic simulated ground water in the presence of SRB enriched from the planned disposal site.

Comparison of Bacterial Community of Healthy and Erwinia amylovora Infected Apples

  • Kim, Su-Hyeon;Cho, Gyoengjun;Lee, Su In;Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.396-403
    • /
    • 2021
  • Fire blight disease, caused by Erwinia amylovora, could damage rosaceous plants such as apples, pears, and raspberries. In this study, we designed to understand how E. amylovora affected other bacterial communities on apple rhizosphere; twig and fruit endosphere; and leaf, and fruit episphere. Limited studies on the understanding of the microbial community of apples and changes the community structure by occurrence of the fire blight disease were conducted. As result of these experiments, the infected trees had low species richness and operational taxonomic unit diversity when compared to healthy trees. Rhizospheric bacterial communities were stable regardless of infection. But the communities in endosphere and episphere were significanlty affected by E. amylovora infection. We also found that several metabolic pathways differ significantly between infected and healthy trees. In particular, we observed differences in sugar metabolites. The finding provides that sucrose metabolites are important for colonization of E. amylovora in host tissue. Our results provide fundamental information on the microbial community structures between E. amylovora infected and uninfected trees, which will contribute to developing novel control strategies for the fire blight disease.

Microbial transformation of the sweet sesquiterpene (+)-hernandulcin

  • Yang, Hyun-Ju;Kim, Hyun-Jung;Whang, Yun-Ae;Choi, Jung-Kap;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.5 no.3
    • /
    • pp.151-153
    • /
    • 1999
  • (+)-Hernandulcin is a sweet bisabolane-type sesquiterpene first isolated from Lippia dulcis Trev. (Verbenaceae). This oily compound is 1000-1500 times sweeter than sucrose but with poor solubility in water. Microbial transformation was employed to improve its water solubility, and a variety of microorganisms were screened for their ability to convert (+)-hernandulcin to more polar metabolites. Scale-up fermentation with Glomerella cinguiata, a fungal strain, has resulted in the isolation of a more polar metabolite (2).

  • PDF

Effect of Methyl tert-butyl Ether and Its Metabolites on the Microbial Population: Comparison of Soil Samples from Rice Field, Leek Patch and Tidal Mud Flat (다양한 토양 환경에서 Methyl tert-Butyl Ether와 그의 대사산물이 노출되었을 때 미생물 군집에 미치는 영향: 논, 밭, 갯벌 시료 비교)

  • Cho, Won-Sil;Cho, Kyung-Suk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.403-413
    • /
    • 2008
  • Toxic effect of methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA) and formaldehyde (FA) on microbial activity and diversity was compared in rice field, leek patch, and tidal mud flat soil samples. MTBE, TBA and FA with different concentrations were added into microcosms containing these soil samples, and placed at room temperature for 30 days. Then the microbial activities such as dehydrogenase and viable cell numbers and microbial community using a DGGE (Denaturing gradient gel electrophoresis) fingerprinting method were measured. Among the samples, dehydrogenase activity in rice field was inhibited the most by MTBE, TBA and FA. The toxic effect was higher according to the following orders: FA > MTBE > TBA. Dominant species in the microcosms contaminated with MTBE, TBA and FA were Chloroflex, Bacilli, gamma-proteobacteria in the rice field sample, Sphingobacteria, Flavobacteria, Actinobacteria, Bacilli, gamma-proteobacteria in the leek patch sample, and Sphingobacteria, Flavobacteria, delta-proteobacteria, gamma-proteobacteria in the tidal mud flat sample.

Epimers/Metabolites of Tetracycline Derivatives; Biological Activity and Regulation Aspects for MRL in Food (생물학적활성을 기초로 한 테트라싸이클린계 항생물질 잔류스크리닝법의 개선과 식품 중 잔류허용기준 설정 개선)

  • Kwon, Jin-Wook;Yun, Hyo-In;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.82-88
    • /
    • 2011
  • BACKGROUND: Tetracyclines (TCs) are mainly regulated as parent compounds by bioactivity-based screening methods in food. Especially with respect to antimicrobial residues, their metabolites/epimers are also highly concerning chemicals and traditionally applied microbial detection methods are needed to improve with validation for regulatory control. METHODS AND RESULTS: Detection capability and biological activity of tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC) and their epimers; anhydrotetracycline (ATC), epianhydrotetracycline (EATC), epitetracycline (ETC), 4-epi-chlortetracycline (ECTC), 4-epianydrochlotetra-cycline (EACTC), 4-epioxychlortetracycline (EOTC), were measured by microbial growth inhibition screening method of Korea Food Code. CONCLUSION(S): Limited detection capabilities were found, B. megarerium and B. subtilis showed for TC and CTC, and B. subtilis for OTC. Biological potency of each epimer was also presented against various microorganisms, at the level from 50% to 96%, comparing with parent TCs. It is recommended that more advanced microbial screening methods with validation are needed, and biologically active epimers are to be considered as marker residues for MRL setting of regulatory control purpose.

Evaluation of Matrix Effects in Quantifying Microbial Secondary Metabolites in Indoor Dust Using Ultraperformance Liquid Chromatographe-Tandem Mass Spectrometer

  • Jaderson, Mukhtar;Park, Ju-Hyeong
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.196-204
    • /
    • 2019
  • Background: Liquid chromatography-tandem mass spectrometry (LC-MSMS) for simultaneous analysis of multiple microbial secondary metabolites (MSMs) is potentially subject to interference by matrix components. Methods: We examined potential matrix effects (MEs) in analyses of 31 MSMs using ultraperformance LC-MSMS. Twenty-one dust aliquots from three buildings (seven aliquots/building) were spiked with seven concentrations of each of the MSMs ($6.2pg/{\mu}l-900pg/{\mu}l$) and then extracted. Another set of 21 aliquots were first extracted and then, the extract was spiked with the same concentrations. We added deepoxy-deoxynivalenol (DOM) to all aliquots as a universal internal standard. Ten microliters of the extract was injected into the ultraperformance LC-MSMS. ME was calculated by subtracting the percentage of the response of analyte in spiked extract to that in neat standard from 100. Spiked extract results were used to create a matrix-matched calibration (MMC) curve for estimating MSM concentration in dust spiked before extraction. Results: Analysis of variance was used to examine effects of compound (MSM), building and concentration on response. MEs (range: 63.4%-99.97%) significantly differed by MSM (p < 0.01) and building (p < 0.05). Mean percent recoveries adjusted with DOM and the MMC method were 246.3% (SD = 226.0) and 86.3% (SD = 70.7), respectively. Conclusion: We found that dust MEs resulted in substantial underestimation in quantifying MSMs and that DOM was not an optimal universal internal standard for the adjustment but that the MMC method resulted in more accurate and precise recovery compared with DOM. More research on adjustment methods for dust MEs in the simultaneous analyses of multiple MSMs using LC-MSMS is warranted.