Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.04.2021.0062

Comparison of Bacterial Community of Healthy and Erwinia amylovora Infected Apples  

Kim, Su-Hyeon (Division of Applied Life Science (BK21Plus) and Research Institute of Life Science, Gyeongsang National University)
Cho, Gyoengjun (Division of Applied Life Science (BK21Plus) and Research Institute of Life Science, Gyeongsang National University)
Lee, Su In (Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University)
Kim, Da-Ran (Division of Applied Life Science (BK21Plus) and Research Institute of Life Science, Gyeongsang National University)
Kwak, Youn-Sig (Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University)
Publication Information
The Plant Pathology Journal / v.37, no.4, 2021 , pp. 396-403 More about this Journal
Abstract
Fire blight disease, caused by Erwinia amylovora, could damage rosaceous plants such as apples, pears, and raspberries. In this study, we designed to understand how E. amylovora affected other bacterial communities on apple rhizosphere; twig and fruit endosphere; and leaf, and fruit episphere. Limited studies on the understanding of the microbial community of apples and changes the community structure by occurrence of the fire blight disease were conducted. As result of these experiments, the infected trees had low species richness and operational taxonomic unit diversity when compared to healthy trees. Rhizospheric bacterial communities were stable regardless of infection. But the communities in endosphere and episphere were significanlty affected by E. amylovora infection. We also found that several metabolic pathways differ significantly between infected and healthy trees. In particular, we observed differences in sugar metabolites. The finding provides that sucrose metabolites are important for colonization of E. amylovora in host tissue. Our results provide fundamental information on the microbial community structures between E. amylovora infected and uninfected trees, which will contribute to developing novel control strategies for the fire blight disease.
Keywords
endosphere; episphere; Erwinia amylovora; microbiome; rhizosphere;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yao, H., Sun, X., He, C., Maitra, P., Li, X.-C. and Guo, L.-D. 2019. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7:57.   DOI
2 Zheng, P.-F., Yang, Y.-Y., Zhang, S., You, C.-X., Zhang, Z.-L. and Hao, Y.-J. 2020. Identification and functional characterization of MdPIF3 in response to cold and drought stress in Malus domestica. Plant Cell Tissue Organ Cult. 144:435-447.
3 Ait Bahadou, S., Ouijja, A., Karfach, A., Tahiri, A. and Lahlali, R. 2018. New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco. Microb. Pathog. 117:7-15.   DOI
4 Williamson, S. J. and Yooseph, S. 2012. From bacterial to microbial ecosystems (metagenomics). Methods Mol. Biol. 804:35-55.   DOI
5 Buban, T. and Orosz-Kovacs, Z. 2003. The nectary as the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Syst. Evol. 238:183-194.   DOI
6 Born, Y., Fieseler, L., Thony, V., Leimer, N., Duffy, B. and Loessner, M. J. 2017. Engineering of bacteriophages Y2::dpoL1-C and Y2::luxAB for efficient control and rapid detection of the fire blight pathogen, Erwinia amylovora. Appl. Environ. Microbiol. 83:e00341-e00317.
7 Wassermann, B., Muller, H. and Berg, G. 2019. An apple a day: which bacteria do we eat with organic and conventional apples? Front. Microbiol. 10:1629.   DOI
8 Vincent, P. J., Brunner, J. F., Grove, G. G., Petit, B., Tangren, G. V. and Jones, W. E. 2010. A web-based decision support system to enhance IPM programs in Washington tree fruit. Pest Manag. Sci. 66:587-595.   DOI
9 Bengtsson-Palme, J., Kristiansson, E. and Larsson, D. G. J. 2018. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 42:fux053.
10 Broggini, G. A. L., Duffy, B., Holliger, E., Scharer, H.-J., Gessler, C. and Patocchi, A. 2005. Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro®) in a Swiss apple orchard. Eur. J. Plant Pathol. 111:93-100.   DOI
11 Cabrefiga, J., Bonaterra, A. and Montesinos, E. 2007. Mechanisms of antagonism of Pseudomonas fluorescens EPS62e against Erwinia amylovora, the causal agent of fire blight. Int. Microbiol. 10:123-132.
12 Kim, M.-J., Chae, D.-H., Cho, G., Kim, D.-R. and Kwak, Y.-S. 2019b. Characterization of antibacterial strains against kiwifruit bacterial canker pathogen. Plant Pathol. J. 35:473-485.   DOI
13 Zhao, Y.-Q., Tian, Y.-L., Wang, L.-M., Geng, G.-M., Zhao, W.-J., Hu, B.-S. and Zhao, Y.-F. 2019. Fire blight disease, a fastapproaching threat to apple and pear production in China. J. Integr. Agric. 18:815-820.   DOI
14 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A. and Holmes, S. P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13:581-583.   DOI
15 Cui, Z., Huntley, R. B., Zeng, Q. and Steven, B. 2021. Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora. ISME J. 15:318-329.   DOI
16 Kim, D.-R., Cho, G., Jeon, C.-W., Weller, D. M., Thomashow, L. S., Paulitz, T. C. and Kwak, Y.-S. 2019a. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10:4802.   DOI
17 Koczan, J. M., McGrath, M. J., Zhao, Y. and Sundin, G. W. 2009. Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237-1244.   DOI
18 Murali, A., Bhargava, A. and Wright, E. S. 2018. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6:140.   DOI
19 Miller, T. D. and Schroth, M. N. 1972. Monitoring the epiphytic population of Erwinia amylovora on pear with a selective medium. Phytopathology 62:1175-1182.   DOI
20 Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. and Dangl, J. L. 2013. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10:999-1002.   DOI
21 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and Glockner, F. O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590-D596.   DOI
22 Ritchie, H. and Roser, M. 2020. Agriculture production. Published online at OurWorldindata.org. URL https://ourworldindata.org/agricultural-production [19 July 2021].
23 Kube, M., Migdoll, A. M., Gehring, I., Heitmann, K., Mayer, Y., Kuhl, H., Knaust, F., Geider, K. and Reinhardt, R. 2010. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 11:393.   DOI
24 McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465.   DOI
25 Acimovic, S. G., Zeng, Q., McGhee, G. C., Sundin, G. W. and Wise, J. C. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesisrelated protein genes. Front. Plant Sci. 6:16.   DOI
26 Bogs, J. and Geider, K. 2000. Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. J. Bacteriol. 182:5351-5358.   DOI
27 Kruskal, W. H. and Wallis, W. A. 1952. Use of ranks in onecriterion variance analysis. J. Am. Stat. Assoc. 47:583-621.   DOI
28 Rosello, G., Bonaterra, A., Frances, J., Montesinos, L., Badosa, E. and Montesinos, E. 2013. Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum. Eur. J. Plant Pathol. 137:621-633.   DOI
29 Pusey, P. L., Stockwell, V. O., Reardon, C. L., Smits, T. H. M. and Duffy, B. 2011. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology 101:1234-1241.   DOI
30 van der Zwet, T., Orolaza-Halbrendt, N. and Zeller, W. 2012. Fire blight: history, biology, and management. American Phytopathological Society, St. Paul, MN, USA. 421 pp.
31 Sholberg, P., Bedford, K. E., Haag, P. and Randall, P. 2001. Survey of Erwinia amylovora isolates from British Columbia for resistance to bactericides and virulence on apple. Can. J. Plant Pathol. 23:60-67.   DOI