Browse > Article
http://dx.doi.org/10.4489/MYCO.2008.36.2.121

Flavone Biotransformation by Aspergillus niger and the Characterization of Two Newly Formed Metabolites  

Mahmoud, Yehia A.-G. (Tanta University, Faculty of Science, Botany Department, Mycology Research Lab.)
Assawah, Suzan W. (Tanta University, Faculty of Science, Botany Department, Mycology Research Lab.)
El-Sharkawy, Saleh H. (Al Mansoura University, Faculty of Pharamcy)
Abdel-Salam, Amal (Tanta University, Faculty of Science, Botany Department, Mycology Research Lab.)
Publication Information
Mycobiology / v.36, no.2, 2008 , pp. 121-133 More about this Journal
Abstract
Aspergillus niger isolated from Allium sativum was used at large scale fermentation (150 mg flavone/200ml medium) to obtain suitable amounts of the products, efficient for identification. Then spectral analysis (UV, IR, $^1H$-NMR, $^{13}C$-NMR) and mass spectrometry were performed for the two products, which contributed to the identification process. The metabolite (1) was identified as 2'-hydroxydihydrochalcone, and the metabolite (2) was identified as 2'-hydroxyphenylmethylketone, which were more active than flavone itself. Antioxidant activities of the two isolated metabolites were tested compared with ascorbic acid. Antioxidant activity of metabolite (1) was recorded 64.58% which represented 79% of the antioxidant activity of ascorbic acid, and metabolite (2) was recorded 54.16% (67% of ascorbic acid activity). However, the antioxidant activity of flavone was recorded 37.50% which represented 46% of ascorbic acid activity. The transformed products of flavone have anti-microbial activity against Pseudomonas aeruginosa, Aspergillus flavus and Candida albicans, with MIC was recorded $250{\mu}g/ml$ for metabolite (2) against all three organism and 500, 300, and $300{\mu}g/ml$ for metabolite (1) against tested microorganisms (P. aeruginosa, Escherichia coli, Bacillus subtilis, and Klebsiella pneumonia, Fusarium moniliforme, A. flavus, Saccharomyces cerviceae, Kluveromyces lactis and C. albicans) at this order.
Keywords
Anit-microbial; Antioxidant; Aspergillus; Biotransformation; Flavone;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cooper, J. E., Rao, J. R., Evertaert, E., Cooman, L-de., Decooman- L. and Tikhonovich, I. A. 1995. Metabolism of flavonoids by rhizobia. Provorov-N.A., Romanov-V.I. and Newton- W.E., Proceedings of the 10th International Congress On Nitrogen Fixation, St. Petersburg, Russia, 287-292
2 Ciegler Alex, Lloyd, A., Lindernfelser and George Nelson, E. N. 1971. Microbial transformation of flavonoids. Agr. Res. Service. Peoria, Illinois, Appl. Microbiol. 22:974-979
3 Greene, L. S. 1995. Asthma and oxidant stress: nutritional, environmental, and genetic risk factors. J. Am. Coll. Nutr. 14:317- 324   DOI
4 Gorny, N. and Schink, B. 1994. Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate. Appl. Environ. Microbiol. 60:3396- 3400
5 Hunter, T. 1995. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell 80:225- 236   DOI   ScienceOn
6 Ibrahim A. R. S. 1999. Sulfation of naringenin by cunninghamella elegans. Egypt phytochemistry 53:209-212
7 Ibrahim, A. R. S. and Abul-Hajj, Y. J. 1990. Microbiological transformation of (1) flavonone and ($\pm$) isoflavonone. J. Nat. Prod. 53:644-656.   DOI
8 Ibrahim, A. R. S. and Abul-Haji, Y. J. 1989. Aromatic hydroxylation and sulfation of 5'-hydroxyflavone by Streptomyces fulvissimus. Appl. Environ. Microbiol. 55:3140-3142
9 Rao, K. V. and Weisner, N. T. 1981. Microbial transformation of quercetin by Bacillus cereus. Appl. Environ. Microbiol. 42:450- 452
10 Weidenborner, M. and Jha, H. C. 1997. Antifungal spectrum of flavone and flavanone tested against 34 different fungi. Mycological- Research 101:733-736   DOI   ScienceOn
11 Smith, L. L. 1973. Microbiological reactions with steroids. Spec. Period. Rep. Terpenoids Steroids 4:394-530
12 Svardal, A., Buset, H. and Scheline, R. R. 1981. Disposition of (2-14C) flavone in the rat. Acta Pharmaceutica Suecica. 18:55- 62
13 Winter, J., Moore, L. H., Dowell, V. R. and Bokkenheuser, V. D. 1989. C-ring cleavage of flavonoids by intestinal bacteria. Appl. Environ. Microbiol. 55:1203-1208
14 Barz, W. 1970. Isolation of rhizosphere bacterium capable of degrading flavonoids. Phytochemistry 9:1745-1949   DOI   ScienceOn
15 Zheng, W. F., Tan, R. X., Yang, L. and Liu, Z. L. 1996. Two flavones from Artemsia giraldii and their antimicrobial activity. Planta. Medica. 62:160-162   DOI   ScienceOn
16 Barz, W., Adamek, C. and Berlin, J. 1970. Ion of formation and daidzein in Cicer arietinum and Phaseolus aureus. Phytochemistry 9:1735-1744   DOI   ScienceOn
17 Kim, D. H., Jung, E. A., Sohng, I. S., Han, J. A., Kim, T. H. and Han, M. J. 1998. Intestinal bacterial metabolism of flavonoids and its some biological activities. Arch. Pharm. Res. 21:17-23   DOI
18 Rice-Evans, C. A. and Miller, N. J. 1994. Total antioxidant status in plasma and body fluids. Methods Enzymol. 234:279-293   DOI
19 Bowie, J. H. and Cameron, D. W. 1966. Electron impact studies. II Mass spectra of quercetagetin derivatives. Australian J. Chem. 19:1627-1635   DOI
20 Briviba, K., Sepulveda-Boza, S., Zilliken, F. and Sies, H. 1997. Isoflavonoids as inhibitors of lipid peroxidation and quenchers of singlet oxygen. In: Flavonoids in health and disease, pp. 295-302. Eds. C. A. Rice-Evans and L. Packer. Marcel Dekker, Inc., New York, N.Y
21 Smith, R. V. and Rosazza, J. P. 1975. Microbial models of mammalian metabolism. J. Pharm. Sci. 64:1737-1759   DOI
22 Shultz, E., Engle, F. E. and Wood, J. M. 1974. New oxygenases in the degradation of flavones and flavonones by Pseudomonas putida. Biochemistry 13:1768-1776   DOI   ScienceOn
23 Salah, N., Miller, N. and Paganga, G. 1995. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chainbreaking antioxidants. Arch. Biochem. Biophys 322:339-346   DOI   ScienceOn
24 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. 26:1231-1237   DOI   ScienceOn
25 Krumholz, L. R. and Bryant, M. P. 1986. Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol. 144: 8-14   DOI
26 Rao, R. J. and Cooper, J. E. 1994. Rhizobia catabolize nod geneinducing flavonoids via C-ring fission mechanisms. J. Bacteriol. 176:5409-5413   DOI
27 Weidenborner, M. and Jha, H. C. 1997. Antifungal spectrum of flavone and flavanone tested against 34 different fungi. Mycological-Research. 101:733-736.   DOI   ScienceOn
28 Arora, A., Nair, M. G. and Strasburg, G. M. 1998. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch. Biochem. Biophys. 356:133-141   DOI   ScienceOn
29 Gajendiran, N. and Mahadevan, A. 1988. Utilization of catechin by Rhizobium sp. Plant Soil 108:263-266   DOI
30 Cheng, K. J., Jones, G. A., Simpson, F. J. and Bryant, M. P. 1969. Isolation and identification of rumen bacteria capable of anaerobic rutin degradation. Can. J. Microbiol. 15:1365-1371   DOI   ScienceOn
31 Cano, A., Hernandez-Ruiz, J., Garcia-Canovas, F., Acosta, M. and Arnao, M. B. 1998. An end-point method for estimation of the total antioxidant activity in plant material. Phytochem. Anal. 9:196-202   DOI   ScienceOn
32 Krishnamurthy, H. G., Cheng, K. J., Jones, G. A., Simpson, F. J. and Watkin, J. E. 1970. Identification of products produced by the anaerobic degradation of rutin and related flvonoids by Butyrivibrio spp. C. Can. J. Microbiol. 16:759-767   DOI   ScienceOn
33 Das, N. P., Scott, K. N. and Duncan, J. H. 1973. Identification of flavanone metabolites in the rat urine by combined GC-MS. Biochem. J. 136:903-909   DOI
34 Schneider, H., Schwiertz, A., Collins, M. D. and Blaut, M. 1999. Anaerobic transformation of quercetin-3-glucosidase by bacteria from human intestinal tract. Arch. Microbiol. 171:81-91   DOI
35 Seeger, M., Gonzalez, M., Camara, B., Munoz, L., Ponce, E., Mejias, L., Mascayano, C., Vasquez, Y. and Sepulveda-Boza, S. 2003. Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Faculty of Medical Science. University of Santiago, Santiago, Chile. App. and Environ. Microbiol. 69:5045-5050   DOI
36 Koizumi, M., Shimuzi, M. and Kobashi, K. 1990. Enzymic sulfation of quercetin by arylsulfotransferase from a human intestinal bacterium. Chem. Pharm. Bull. Tokyo 38:794-796   DOI   ScienceOn
37 Rao, R. J., Sharma, N. D., Hamilton, J. T. G., Boyd, D. R. and Cooper, J. E. 1991. Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Appl. Environ. Microbiol. 57:1563-1565
38 Ibrahim, A. R. S., Galal, A. M., Mossa, J. S. and El-Feraly, F. S. 1997. Glucose-conjugation of the flavones of Psidia arabica by cunninghamell elegans. Phytochemsity 46:1193- 1195   DOI
39 Harborne, J. B. 1968. Comparative biochemistry of flavonoids- VII. Correlations between flavonoid pigmentation and systematics in the family Primulaceae. Phytochem. 7:1215-1230   DOI   ScienceOn
40 Horowitz, R. M. 1957. Detection of flavanones by reduction with sodium borohydride. J. Org. Chem. 22:1733-1734.   DOI
41 Schneider, H. and Blaut, M. 2000. Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch. Microbiol. 173:71-75   DOI