DOI QR코드

DOI QR Code

Flavone Biotransformation by Aspergillus niger and the Characterization of Two Newly Formed Metabolites

  • Mahmoud, Yehia A.-G. (Tanta University, Faculty of Science, Botany Department, Mycology Research Lab.) ;
  • Assawah, Suzan W. (Tanta University, Faculty of Science, Botany Department, Mycology Research Lab.) ;
  • El-Sharkawy, Saleh H. (Al Mansoura University, Faculty of Pharamcy) ;
  • Abdel-Salam, Amal (Tanta University, Faculty of Science, Botany Department, Mycology Research Lab.)
  • Published : 2008.06.30

Abstract

Aspergillus niger isolated from Allium sativum was used at large scale fermentation (150 mg flavone/200ml medium) to obtain suitable amounts of the products, efficient for identification. Then spectral analysis (UV, IR, $^1H$-NMR, $^{13}C$-NMR) and mass spectrometry were performed for the two products, which contributed to the identification process. The metabolite (1) was identified as 2'-hydroxydihydrochalcone, and the metabolite (2) was identified as 2'-hydroxyphenylmethylketone, which were more active than flavone itself. Antioxidant activities of the two isolated metabolites were tested compared with ascorbic acid. Antioxidant activity of metabolite (1) was recorded 64.58% which represented 79% of the antioxidant activity of ascorbic acid, and metabolite (2) was recorded 54.16% (67% of ascorbic acid activity). However, the antioxidant activity of flavone was recorded 37.50% which represented 46% of ascorbic acid activity. The transformed products of flavone have anti-microbial activity against Pseudomonas aeruginosa, Aspergillus flavus and Candida albicans, with MIC was recorded $250{\mu}g/ml$ for metabolite (2) against all three organism and 500, 300, and $300{\mu}g/ml$ for metabolite (1) against tested microorganisms (P. aeruginosa, Escherichia coli, Bacillus subtilis, and Klebsiella pneumonia, Fusarium moniliforme, A. flavus, Saccharomyces cerviceae, Kluveromyces lactis and C. albicans) at this order.

Keywords

References

  1. Arora, A., Nair, M. G. and Strasburg, G. M. 1998. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch. Biochem. Biophys. 356:133-141 https://doi.org/10.1006/abbi.1998.0783
  2. Kim, D. H., Jung, E. A., Sohng, I. S., Han, J. A., Kim, T. H. and Han, M. J. 1998. Intestinal bacterial metabolism of flavonoids and its some biological activities. Arch. Pharm. Res. 21:17-23 https://doi.org/10.1007/BF03216747
  3. Barz, W. 1970. Isolation of rhizosphere bacterium capable of degrading flavonoids. Phytochemistry 9:1745-1949 https://doi.org/10.1016/S0031-9422(00)85586-7
  4. Barz, W., Adamek, C. and Berlin, J. 1970. Ion of formation and daidzein in Cicer arietinum and Phaseolus aureus. Phytochemistry 9:1735-1744 https://doi.org/10.1016/S0031-9422(00)85585-5
  5. Bowie, J. H. and Cameron, D. W. 1966. Electron impact studies. II Mass spectra of quercetagetin derivatives. Australian J. Chem. 19:1627-1635 https://doi.org/10.1071/CH9661627
  6. Briviba, K., Sepulveda-Boza, S., Zilliken, F. and Sies, H. 1997. Isoflavonoids as inhibitors of lipid peroxidation and quenchers of singlet oxygen. In: Flavonoids in health and disease, pp. 295-302. Eds. C. A. Rice-Evans and L. Packer. Marcel Dekker, Inc., New York, N.Y
  7. Cano, A., Hernandez-Ruiz, J., Garcia-Canovas, F., Acosta, M. and Arnao, M. B. 1998. An end-point method for estimation of the total antioxidant activity in plant material. Phytochem. Anal. 9:196-202 https://doi.org/10.1002/(SICI)1099-1565(199807/08)9:4<196::AID-PCA395>3.0.CO;2-W
  8. Cheng, K. J., Jones, G. A., Simpson, F. J. and Bryant, M. P. 1969. Isolation and identification of rumen bacteria capable of anaerobic rutin degradation. Can. J. Microbiol. 15:1365-1371 https://doi.org/10.1139/m69-247
  9. Ciegler Alex, Lloyd, A., Lindernfelser and George Nelson, E. N. 1971. Microbial transformation of flavonoids. Agr. Res. Service. Peoria, Illinois, Appl. Microbiol. 22:974-979
  10. Cooper, J. E., Rao, J. R., Evertaert, E., Cooman, L-de., Decooman- L. and Tikhonovich, I. A. 1995. Metabolism of flavonoids by rhizobia. Provorov-N.A., Romanov-V.I. and Newton- W.E., Proceedings of the 10th International Congress On Nitrogen Fixation, St. Petersburg, Russia, 287-292
  11. Das, N. P., Scott, K. N. and Duncan, J. H. 1973. Identification of flavanone metabolites in the rat urine by combined GC-MS. Biochem. J. 136:903-909 https://doi.org/10.1042/bj1360903
  12. Gajendiran, N. and Mahadevan, A. 1988. Utilization of catechin by Rhizobium sp. Plant Soil 108:263-266 https://doi.org/10.1007/BF02375657
  13. Gorny, N. and Schink, B. 1994. Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate. Appl. Environ. Microbiol. 60:3396- 3400
  14. Greene, L. S. 1995. Asthma and oxidant stress: nutritional, environmental, and genetic risk factors. J. Am. Coll. Nutr. 14:317- 324 https://doi.org/10.1080/07315724.1995.10718516
  15. Harborne, J. B. 1968. Comparative biochemistry of flavonoids- VII. Correlations between flavonoid pigmentation and systematics in the family Primulaceae. Phytochem. 7:1215-1230 https://doi.org/10.1016/S0031-9422(00)85616-2
  16. Horowitz, R. M. 1957. Detection of flavanones by reduction with sodium borohydride. J. Org. Chem. 22:1733-1734. https://doi.org/10.1021/jo01363a636
  17. Weidenborner, M. and Jha, H. C. 1997. Antifungal spectrum of flavone and flavanone tested against 34 different fungi. Mycological-Research. 101:733-736. https://doi.org/10.1017/S0953756296003322
  18. Ibrahim A. R. S. 1999. Sulfation of naringenin by cunninghamella elegans. Egypt phytochemistry 53:209-212
  19. Hunter, T. 1995. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell 80:225- 236 https://doi.org/10.1016/0092-8674(95)90405-0
  20. Ibrahim, A. R. S. and Abul-Haji, Y. J. 1989. Aromatic hydroxylation and sulfation of 5'-hydroxyflavone by Streptomyces fulvissimus. Appl. Environ. Microbiol. 55:3140-3142
  21. Ibrahim, A. R. S. and Abul-Hajj, Y. J. 1990. Microbiological transformation of (1) flavonone and ($\pm$) isoflavonone. J. Nat. Prod. 53:644-656. https://doi.org/10.1021/np50069a017
  22. Ibrahim, A. R. S., Galal, A. M., Mossa, J. S. and El-Feraly, F. S. 1997. Glucose-conjugation of the flavones of Psidia arabica by cunninghamell elegans. Phytochemsity 46:1193- 1195 https://doi.org/10.1016/S0031-9422(97)80010-6
  23. Koizumi, M., Shimuzi, M. and Kobashi, K. 1990. Enzymic sulfation of quercetin by arylsulfotransferase from a human intestinal bacterium. Chem. Pharm. Bull. Tokyo 38:794-796 https://doi.org/10.1248/cpb.38.794
  24. Krishnamurthy, H. G., Cheng, K. J., Jones, G. A., Simpson, F. J. and Watkin, J. E. 1970. Identification of products produced by the anaerobic degradation of rutin and related flvonoids by Butyrivibrio spp. C. Can. J. Microbiol. 16:759-767 https://doi.org/10.1139/m70-129
  25. Rao, K. V. and Weisner, N. T. 1981. Microbial transformation of quercetin by Bacillus cereus. Appl. Environ. Microbiol. 42:450- 452
  26. Rao, R. J. and Cooper, J. E. 1994. Rhizobia catabolize nod geneinducing flavonoids via C-ring fission mechanisms. J. Bacteriol. 176:5409-5413 https://doi.org/10.1128/jb.176.17.5409-5413.1994
  27. Rao, R. J., Sharma, N. D., Hamilton, J. T. G., Boyd, D. R. and Cooper, J. E. 1991. Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Appl. Environ. Microbiol. 57:1563-1565
  28. Krumholz, L. R. and Bryant, M. P. 1986. Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol. 144: 8-14 https://doi.org/10.1007/BF00454948
  29. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. 26:1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  30. Rice-Evans, C. A. and Miller, N. J. 1994. Total antioxidant status in plasma and body fluids. Methods Enzymol. 234:279-293 https://doi.org/10.1016/0076-6879(94)34095-1
  31. Salah, N., Miller, N. and Paganga, G. 1995. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chainbreaking antioxidants. Arch. Biochem. Biophys 322:339-346 https://doi.org/10.1006/abbi.1995.1473
  32. Schneider, H. and Blaut, M. 2000. Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch. Microbiol. 173:71-75 https://doi.org/10.1007/s002030050010
  33. Schneider, H., Schwiertz, A., Collins, M. D. and Blaut, M. 1999. Anaerobic transformation of quercetin-3-glucosidase by bacteria from human intestinal tract. Arch. Microbiol. 171:81-91 https://doi.org/10.1007/s002030050682
  34. Seeger, M., Gonzalez, M., Camara, B., Munoz, L., Ponce, E., Mejias, L., Mascayano, C., Vasquez, Y. and Sepulveda-Boza, S. 2003. Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Faculty of Medical Science. University of Santiago, Santiago, Chile. App. and Environ. Microbiol. 69:5045-5050 https://doi.org/10.1128/AEM.69.9.5045-5050.2003
  35. Shultz, E., Engle, F. E. and Wood, J. M. 1974. New oxygenases in the degradation of flavones and flavonones by Pseudomonas putida. Biochemistry 13:1768-1776 https://doi.org/10.1021/bi00705a033
  36. Smith, L. L. 1973. Microbiological reactions with steroids. Spec. Period. Rep. Terpenoids Steroids 4:394-530
  37. Smith, R. V. and Rosazza, J. P. 1975. Microbial models of mammalian metabolism. J. Pharm. Sci. 64:1737-1759 https://doi.org/10.1002/jps.2600641104
  38. Svardal, A., Buset, H. and Scheline, R. R. 1981. Disposition of (2-14C) flavone in the rat. Acta Pharmaceutica Suecica. 18:55- 62
  39. Weidenborner, M. and Jha, H. C. 1997. Antifungal spectrum of flavone and flavanone tested against 34 different fungi. Mycological- Research 101:733-736 https://doi.org/10.1017/S0953756296003322
  40. Winter, J., Moore, L. H., Dowell, V. R. and Bokkenheuser, V. D. 1989. C-ring cleavage of flavonoids by intestinal bacteria. Appl. Environ. Microbiol. 55:1203-1208
  41. Zheng, W. F., Tan, R. X., Yang, L. and Liu, Z. L. 1996. Two flavones from Artemsia giraldii and their antimicrobial activity. Planta. Medica. 62:160-162 https://doi.org/10.1055/s-2006-957841

Cited by

  1. Biotransformation of Steroids and Flavonoids by Cultures of Aspergillus niger vol.176, pp.3, 2015, https://doi.org/10.1007/s12010-015-1619-x
  2. The influence of naphthaleneacetic acid (NAA) and coumarin on flavonoid production by fungus Phellinus sp.: modeling of production kinetic profiles vol.99, pp.22, 2015, https://doi.org/10.1007/s00253-015-6824-6