• Title/Summary/Keyword: Microbial metabolites

Search Result 166, Processing Time 0.029 seconds

Biotransformation of Valdecoxib by Microbial Cultures

  • Srisailam, K.;Veeresham, C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.809-816
    • /
    • 2010
  • Microbial biotransformations can be used to predict mammalian drug metabolism. The present investigation deals with microbial biotransformation of valdecoxib using microbial cultures. Thirty-nine bacterial, fungal, and yeast cultures were used to elucidate the biotransformation pathway of valdecoxib. A number of microorganisms metabolized valdecoxib to various levels to yield nine metabolites, which were identified by HPLC-DAD and LC-MS-MS analyses. HPLC analysis of biotransformed products indicated that a majority of the metabolites are more polar than the substrate valdecoxib. Basing on LC-MS-MS analysis, the major metabolite was identified as a hydroxymethyl metabolite of valdecoxib, whereas the remaining metabolites were produced by carboxylation, demethylation, ring hydroxylation, N-acetylation, or a combination of these reactions. The hydroxymethyl and carboxylic acid metabolites were known to be produced in metabolism by mammals. From the results, it can be concluded that microbial cultures, particularly fungi, can be used to predict mammalian drug metabolism.

Global Regulators to Activate Silent Biosynthetic Gene Clusters

  • Shim, Sang Hee
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.183-190
    • /
    • 2020
  • Genome mining has recently emerged as a powerful strategy to discover novel microbial secondary metabolites. However, more than 50% of biosynthetic gene clusters are not transcribed under standardized laboratory culture condition. Several methods have been applied to activate silent biosynthetic gene clusters in the microbes so far. Among the regulatory systems for production of secondary metabolites, global regulators, which affect transcription of genes through regulatory cascades, typically govern the production of small molecules. In this review, global regulators to affect production of microbial secondary metabolites were discussed.

Microbial Metabolism of trans-2-Dodecenal

  • Kim, Hyun-Jung;Park, Hae-Suk;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.19-22
    • /
    • 2011
  • Microbial metabolism of trans-2-dodecenal (1) was studied. Screening studies have revealed a number of microorganisms that are capable of metabolizing trans-2-dodecenal (1). Scale-up fermentation with Penicillium chrysogenum resulted in the production of two microbial metabolites. These metabolites were identified using spectroscopic methods as trans-2-dodecenol (2) and trans-3-dodecenoic acid (3).

The Plant-Stress Metabolites, Hexanoic Aacid and Melatonin, Are Potential "Vaccines" for Plant Health Promotion

  • Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.415-427
    • /
    • 2021
  • A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as "vaccines" to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant's responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.

Gut Microbial Metabolites on Host Immune Responses in Health and Disease

  • Jong-Hwi Yoon;Jun-Soo Do;Priyanka Velankanni;Choong-Gu Lee;Ho-Keun Kwon
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.6.1-6.24
    • /
    • 2023
  • Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.

Brief Review on Microbial Enhanced Oil Recovery (미생물을 이용한 원유 회수증진법에 대한 동향연구)

  • Oh, Kyeongseok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.1010-1019
    • /
    • 2021
  • Petroleum oil in reservoir has been acquired by primary, secondary and tertiary oil recoveries. Microbial enhanced oil recovery (MEOR) classified to tertiary oil recovery has been evaluated in two ways of in-situ and ex-situ options. In-situ MEOR injects microbes into a depleted oil reservoir and stimulates those to generate metabolites. Among metabolites, biosurfactants play an important role to make heavy residues flow. Ex-situ MEOR injects microbial metabolites instead of microbes into a reservoir to recover oil. Even though both in-situ MEOR and ex-situ MEOR are eco-friend processes, in-situ MEOR can be preferred because it is more economic. Even though MEOR have been evaluated for a long time, it is still in the state of evaluating in a pilot-scale. Among microbes, bacteria have been widely evaluated in MEOR purpose. In this paper, bacteria for MEOR were summarized and their metabolites were qualitatively evaluated.

Phylogenic Analysis of Alternaria brassicicola Producing Bioactive Metabolites

  • Jung, Dong-Sun;Na, Yeo-Jung;Ryu, Ki-Hyun
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.289-294
    • /
    • 2002
  • The fungal strain SW-3 having antimicrobial activity was isolated from soil of crucified plants in Pocheon, Kyungki-Do, Korea. Strain SW-3 was identified as Alternaria brassicicola by its morphological characteristics, and confirmed by the analysis of the 18S gene and ITS regions of rDNA. The fungus showed a similarity of 99% with Alternaria brassicicola in the 18S rDNA sequence analysis. A. brassicicola has been reported to produce an antitumor compound, called depudecin. We found that strain SW-3 produced antimicrobial metabolites, in addition to depudecin, during sporulation under different growth conditions. The metabolite of the isolated fungus was found to have strong antifungal activity against Microsporium canis and Trichophyton rubrum, and antibacterial activity against Staphylococcus aureus and Pseudomonas aerogenes. The amount and kind of metabolites produced by the isolate were affected by growth conditions such as nutrients and growth periods.

Comparison of metabolites in rumen fluid, urine, and feces of dairy cow from subacute ruminal acidosis model measured by proton nuclear magnetic resonance spectroscopy

  • Hyun Sang, Kim;Shin Ja, Lee;Jun Sik, Eom;Youyoung, Choi;Seong Uk, Jo;Jaemin, Kim;Sang Suk, Lee;Eun Tae, Kim;Sung Sill, Lee
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective: In this study, metabolites that changed in the rumen fluid, urine and feces of dairy cows fed different feed ratios were investigated. Methods: Eight Holstein cows were used in this study. Rumen fluid, urine, and feces were collected from the normal concentrate diet (NCD) (Italian ryegrass 80%: concentrate 20% in the total feed) and high concentrate diet (HCD) groups (20%: 80%) of dairy cows. Metabolite analysis was performed using proton nuclear magnetic resonance (NMR) identification, and statistical analysis was performed using Chenomx NMR software 8.4 and Metaboanalyst 4.0. Results: The two groups of rumen fluid and urine samples were separated, and samples from the same group were aggregated together. On the other hand, the feces samples were not separated and showed similar tendencies between the two groups. In total, 160, 177, and 188 metabolites were identified in the rumen fluid, urine, and feces, respectively. The differential metabolites with low and high concentrations were 15 and 49, 14 and 16, and 2 and 2 in the rumen fluid, urine, and feces samples, in the NCD group. Conclusion: As HCD is related to rumen microbial changes, research on different metabolites such as glucuronate, acetylsalicylate, histidine, and O-Acetylcarnitine, which are related to bacterial degradation and metabolism, will need to be carried out in future studies along with microbial analysis. In urine, the identified metabolites, such as gallate, syringate, and vanillate can provide insight into microbial, metabolic, and feed parameters that cause changes depending on the feed rate. Additionally, it is thought that they can be used as potential biomarkers for further research on subacute ruminal acidosis.

Microbial Metabolism of Yangonin, a Styryl Lactone from Piper methysticum (Kava)

  • Kim, Ji-Hye;Kim, Hyun-Jung;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.16 no.3
    • /
    • pp.148-152
    • /
    • 2010
  • Microbial metabolism studies of yangonin (1), a major styryl lactone from Piper methysticum, have resulted in the production of three hydroxylated metabolites (2-4). The chemical structures of these compounds were elucidated to be 4-methoxy-6-(12-hydroxystyryl)-2-pyrone (2),4-methoxy-6-(11,12-dihydroxystyryl)-2-pyrone (3),and 4,12-dimethoxy-6-(7,8-dihydroxy-7,8-dihydrostyryl)-2-pyrone (4) on the basis of the chemical and spectroscopic analyses. The compounds 3 and 4 are reported herein as microbial metabolites of yangonin for the first time.

Microbial Transformation of Two Prenylated Naringenins

  • Han, Fubo;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.306-309
    • /
    • 2017
  • Microbial transformation of $({\pm})$-6-(1,1-dimethylallyl)naringenin (6-DMAN, 1) and $({\pm})$-5-(O-prenyl) naringenin-4',7-diacetate (5-O-PN, 2) was performed by using fungi. Scale-up fermentation studies with Mucor hiemalis, Cunninghamella elegans var. elegans, and Penicillium chrysogenum led to the isolation of five microbial metabolites. Chemical structures of the metabolites were determined by spectral analyses as $({\pm})$-8-prenylnaringenin (3), (2S)-5,4'-dihydroxy-7,8-[(R)-2-(1-hydroxy-1-methylethyl)-2,3-dihydrofurano]flavanone (4), $({\pm})$-5-(O-prenyl)naringenin-4'-acetate (5), $({\pm})$-naringenin-4'-acetate (6), and $({\pm})$-naringenin (7), of which 5 was identified as a new compound.