Browse > Article
http://dx.doi.org/10.20307/nps.2017.23.4.306

Microbial Transformation of Two Prenylated Naringenins  

Han, Fubo (College of Pharmacy and Research Institute of Drug Development, Chonnam National University)
Lee, Ik-Soo (College of Pharmacy and Research Institute of Drug Development, Chonnam National University)
Publication Information
Natural Product Sciences / v.23, no.4, 2017 , pp. 306-309 More about this Journal
Abstract
Microbial transformation of $({\pm})$-6-(1,1-dimethylallyl)naringenin (6-DMAN, 1) and $({\pm})$-5-(O-prenyl) naringenin-4',7-diacetate (5-O-PN, 2) was performed by using fungi. Scale-up fermentation studies with Mucor hiemalis, Cunninghamella elegans var. elegans, and Penicillium chrysogenum led to the isolation of five microbial metabolites. Chemical structures of the metabolites were determined by spectral analyses as $({\pm})$-8-prenylnaringenin (3), (2S)-5,4'-dihydroxy-7,8-[(R)-2-(1-hydroxy-1-methylethyl)-2,3-dihydrofurano]flavanone (4), $({\pm})$-5-(O-prenyl)naringenin-4'-acetate (5), $({\pm})$-naringenin-4'-acetate (6), and $({\pm})$-naringenin (7), of which 5 was identified as a new compound.
Keywords
Microbial transformation; 6-(1,1-dimethylallyl)naringenin; 5-(O-prenyl)naringenin-4',7-diacetate; Mucor hiemalis; Cunninghamella elegans var. elegans; Penicillium chrysogenum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sumathi, R.; Tamizharasi, S.; Sivakumar, T. Int. J. Curr. Adv. Res. 2015, 4, 234-236.
2 Ruh, M. F.; Zacharewski, T.; Connor, K.; Howell, J.; Chen, I.; Safe, S. Biochem. Pharmacol. 1995, 50, 1485-1493.   DOI
3 Zierau, O.; Gester, S.; Schwab, P.; Metz, P.; Kolba, S.; Wulf, M.; Vollmer, G. Planta Med. 2002, 68, 449-451.   DOI
4 Meiyanto, E.; Hermawan, A.; Anindyajati. Asian Pac. J. Cancer Prev. 2012, 13, 427-436.   DOI
5 Assini, J. M.; Mulvihill, E. E.; Huff, M. W. Curr. Opin. Lipidol. 2013, 24, 34-40.   DOI
6 Zierau, O.; Hamann, J.; Tischer, S.; Schwab, P.; Metz, P.; Vollmer, G.; Gutzeit, H. O.; Scholz, S. Biochem. Biophys. Res. Commun. 2005, 326, 909-916.   DOI
7 Seo, E.-K.; Silva, G. L.; Chai, H.-B.; Chagwedera, T. E.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. Phytochemistry 1997, 45, 509-515.   DOI
8 Zierau, O.; Morrissey, C.; Watson, R. W. G.; Schwab, P.; Kolba, S.; Metz, P.; Vollmer, G. Planta Med. 2003, 69, 856-858.   DOI
9 Tokalov, S. V.; Henker, Y.; Schwab, P.; Metz, P.; Gutzeit, H. O. Pharmacology 2004, 71, 46-56.   DOI
10 Clark, A. M.; McChesney, J. D.; Hufford, C. D. Med. Res. Rev. 1985, 5, 231-253.   DOI
11 Han, F.; Lee, I.-S. Phytochem Lett. 2016, 18, 136-139.   DOI
12 Han, F.; Lee, I.-S. Nat. Prod. Res. 2017, 31, 883-889.   DOI
13 Gester, S.; Metz, P.; Zierau, O.; Vollmer, G. Tetrahedron 2001, 57, 1015-1018.   DOI
14 Kim, H. J.; Kim, S. H.; Kang, B. Y.; Lee, I.-S. Arch. Pharm. Res. 2008, 31, 1241-1246.   DOI
15 Tahara, S.; Ingham, J. L.; Mizutani, J. Agric. Biol. Chem. 1987, 51, 211-216.
16 Jang, D. S.; Cuendet, M.; Hawthorne, M. E.; Kardono, L. B. S.; Kawanishi, K.; Fong, H. H. S.; Mehta, R. G.; Pezzuto, J. M.; Kinghorn, A. D. Phytochemistry 2002, 61, 867-872.   DOI
17 Maltese, F.; Erkelens, C.; van der Kooy, F.; Choi, Y. H.; Verpoorte, R. Food Chem. 2009, 116, 575-579.   DOI
18 Kyriakou, E.; Primikyri, A.; Charisiadis, P.; Katsoura, M.; Gerothanassis, I. P.; Stamatis, H.; Tzakos, A. G. Org. Biomol. Chem. 2012, 10, 1739-1742.   DOI