Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.01.2021.0011

The Plant-Stress Metabolites, Hexanoic Aacid and Melatonin, Are Potential "Vaccines" for Plant Health Promotion  

Anderson, Anne J. (Department of Biological Engineering, Utah State University)
Kim, Young Cheol (Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University)
Publication Information
The Plant Pathology Journal / v.37, no.5, 2021 , pp. 415-427 More about this Journal
Abstract
A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as "vaccines" to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant's responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.
Keywords
growth responses; induced systemic tolerance; priming; vaccination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agrios, G. 2005. Plant pathology. 5th ed. Academic Press, Amsterdam, The Netherlands. 953 pp.
2 Arnao, M. B. and Hernandez-Ruiz, J. 2019a. Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci. 24:38-48.   DOI
3 Arnao, M. B. and Hernandez-Ruiz, J. 2019b. Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Res. 2:152-168.   DOI
4 Arnao, M. B. and Hernandez-Ruiz, J. 2020a. Is phytomelatonin a new plant hormone? Agronomy 10:95.   DOI
5 Liang, D., Shen, Y., Ni, Z., Wang, Q., Lei, Z., Xu, N., Deng, Q., Lin, L., Wang, J., Lv, X. and Xia, H. 2018. Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Front. Plant Sci. 9:426.   DOI
6 Conrath, U., Beckers, G. J. M., Langenbach, C. J. G. and Jaskiewicz, M. R. 2015. Priming for enhanced defense. Annu. Rev. Phytopathol. 53:97-119.   DOI
7 Back, K., Tan, D.-X. and Reiter, R. J. 2016. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J. Pineal Res. 61:426-437.   DOI
8 Bektas, Y. and Eulgem, T. 2014. Synthetic plant defense elicitors. Front. Plant Sci. 5:804.   DOI
9 Caarls, L., Pieterse, C. M. and Van Wees, S. C. 2015. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 6:170.   DOI
10 Crespo-Salvador, O., Escamilla-Aguilar, M., Lopez-Cruz, J., Lopez-Rodas, G. and Gonzalez-Bosch, C. 2018. Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea. Plant Cell Rep. 37:153-166.   DOI
11 Ding, B. and Wang, G.-L. 2015. Chromatin versus pathogens: the function of epigenetics in plant immunity. Front. Plant Sci. 6:675.   DOI
12 Liu, C., Chen, L., Zhao, R., Li, R., Zhang, S., Yu, W., Sheng, J. and Shen, L. 2019. Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. J. Agric. Food Chem. 67:6116-6124.   DOI
13 Tauzin, A. S. and Giardina, T. 2014. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front. Plant Sci. 5:293.
14 Ton, J. and Mauch-Mani, B. 2004. Beta-amino-butyric acidinduced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 38:119-130.   DOI
15 Zdor, R. E. and Anderson, A. J. 1992. Influence of root colonizing bacteria on the defense responses of bean. Plant Soil 140:99-107.   DOI
16 Soukup, M., Martinka, M., Bosnic, D., Caplovicova, M., Elbaum, R. and Lux, A. 2017. Formation of silica aggregates in sorghum root endodermis is predetermined by cell wall architecture and development. Ann. Bot. 120:739-753.   DOI
17 Sharif, R., Xie, C., Zhang, H., Arnao, M. B., Ali, M., Ali, Q., Muhammad, I., Shalmani, A., Nawaz, M. A., Chen, P. and Li, Y. 2018. Melatonin and its effects on plant systems. Molecules 23:2352.   DOI
18 Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M. J., Pozo, M. J., Ton, J., van Dam, N. M. and Conrath, U. 2016. Recognizing plant defense priming. Trends Plant Sci. 21:818-822.   DOI
19 Sharma, A. and Zheng, B. 2019. Melatonin mediated regulation of drought stress: physiological and molecular aspects. Plants 8:190.   DOI
20 Simlat, M., Ptak, A., Skrzypek, E., Warchol, M., Moranska, E. and Piorkowska, E. 2018. Melatonin significantly influences seed germination and seedling growth of Stevia rebaudiana Bertoni. PeerJ 6:e5009.   DOI
21 Tan, D.-X., Manchester, L. C., Esteban-Zubero, E., Zhou, Z. and Reiter, R. J. 2015. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886-188906.   DOI
22 Isshiki, A., Akimitsu, K., Yamamoto, M. and Yamamoto, H. 2001. Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol. Plant-Microbe Interact. 14:749-757.   DOI
23 Buttar, Z. A., Wu, S. N., Arnao, M. B., Wang, C., Ullah, I. and Wang, C. 2020. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 9:809.   DOI
24 Shi, H., Chen, K., Wei, Y. and He, C. 2016. Fundamental issues of melatonin-mediated stress signaling in plants. Front. Plant Sci. 7:1124.
25 Siddiqui, M. H., Alamri, S., Al-Khaishany, M. Y., Khan, M. N., Al-Amri, A., Ali, H. M., Alaraidh, I. A. and Alsahli, A. A. 2019. Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. Int. J. Mol. Sci. 20:353.   DOI
26 Cascales-Minana, B. and Cleal, C. J. 2014. The plant fossil record reflects just two great extinction events. Terra Nova 26:195-200.   DOI
27 Tan, D.-X., Manchester, L. C., Liu, X., Rosales-Corral, S. A., Acuna-Castroviejo, D. and Reiter, R. J. 2013. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J. Pineal Res. 54:127-138.   DOI
28 Llorens, E., Fernandez-Crespo, E., Vicedo, B., Lapena, L. and Garcia-Agustin, P. 2013. Enhancement of the citrus immune system provides effective resistance against Alternaria brown spot disease. J. Plant Physiol. 170:146-154.   DOI
29 Lopez-Galiano, M. J., Ruiz-Arroyo, V. M., Fernandez-Crespo, E., Rausell, C., Real, M. D., Garcia-Agustin, P., Gonzalez-Bosch, C. and Garcia-Robles, I. 2017. Oxylipin mediated stress response of a miraculin-like protease inhibitor in hexanoic acid primed eggplant plants infested by Colorado potato beetle. J. Plant Physiol. 215:59-64.   DOI
30 Jaskiewicz, M., Conrath, U. and Peterhansel, C. 2011. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12:50-55.   DOI
31 Tan, D.-X. and Reiter, R. J. 2020. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J. Exp. Bot. 71:4677-4689.   DOI
32 Tepper, C. S. and Anderson, A. J. 1990. Interactions between pectic fragments and extracellular components from the fungal pathogen, Colletotrichum lindemuthianum. Physiol. Mol. Plant Pathol. 36:147-158.   DOI
33 Moustafa-Farag, M., Elkelish, A., Dafea, M., Khan, M., Arnao, M. B., Abdelhamid, M. T., El-Ezz, A. A., Almoneafy, A., Mahmoud, A., Awad, M., Li, L., Wang, Y., Hasanuzzaman, M. and Ai, S. 2020. Role of melatonin in plant tolerance to soil stressors: salinity, pH and heavy metals. Molecules 25:5359.   DOI
34 Fernandez-Crespo, E., Navarro, J. A., Serra-Soriano, M., Finiti, I., Garcia-Agustin, P., Pallas, V. and Gonzalez-Bosch, C. 2017. Hexanoic acid treatment prevents systemic MNSV movement in Cucumis melo plants by priming callose deposition correlating SA and OPDA accumulation. Front. Plant Sci. 8:1793.   DOI
35 da Silva, A. C. R., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R., Quaggio, R. B., Monteiro-Vitorello, C. B., Van Sluys, M. A., Almeida, N. F., Alves, L. M. C., do Amaral, A. M., Bertolini, M. C., Camargo, L. E. A., Camarotte, G., Cannavan, F., Cardozo, J., Chambergo, F., Ciapina, L. P., Cicarelli, R. M. B., Coutinho, L. L., Cursino-Santos, J. R., El-Dorry, H., Faria, J. B., Ferreira, A. J. S., Ferreira, R. C. C., Ferro, M. I. T., Formighieri, E. F., Franco, M. C., Greggio, C. C., Gruber, A., Katsuyama, A. M., Kishi, L. T., Leite, R. P., Lemos, E. G. M., Lemos, M. V. F., Locali, E. C., Machado, M. A., Madeira, A. M. B. N., Martinez-Rossi, N. M., Martins, E. C., Meidanis, J., Menck, C. F. M., Miyaki, C. Y., Moon, D. H., Moreira, L. M., Novo, M. T. M., Okura, V. K., Oliveira, M. C., Oliveira, V. R., Pereira, H. A., Rossi, A., Sena, J. A. D., C. Silva, S., de Souza, R. F., Spinola, L. A. F., Takita, M. A., Tamura, R. E., Teixeira, E. C., Tezza, R. I. D., Trindade dos Santos, M., Truffi, D., Tsai, S. M., White, F. F., Setubal, J. C. and Kitajima, J. P. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459-463.   DOI
36 McElwain, J. C. and Punyasena, S. W. 2007. Mass extinction events and the plant fossil record. Trends Ecol. Evol. 22:548-557.   DOI
37 Niehl, A., Soininen, M., Poranen, M. M. and Heinlein, M. 2018. Synthetic biology approach for plant protection using dsRNA. Plant Biotechnol. J. 16:1679-1687.   DOI
38 Quintana-Rodriguez, E., Duran-Flores, D., Heil, M. and Camacho-Coronel, X. 2018. Damage-associated molecular patterns (DAMPs) as future plant vaccines that protect crops from pests. Sci. Hortic. 237:207-220.   DOI
39 Thaler, J. S., Fidantsef, A. L. and Bostock, R. M. 2002. Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J. Chem. Ecol. 28:1131-1159.   DOI
40 Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821-1831.   DOI
41 Ramirez-Prado, J. S., Abulfaraj, A. A., Rayapuram, N., Benhamed, M. and Hirt, H. 2018. Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci. 23:833-844.   DOI
42 Riemann, M., Dhakarey, R., Hazman, M., Miro, B., Kohli, A. and Nick, P. 2015. Exploring jasmonates in the hormonal network of drought and salinity responses. Front. Plant Sci. 6:1077.   DOI
43 Ryan, C. A. and Farmer, E. E. 1991. Oligosaccharide signals in plants: a current assessment. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:651-674.   DOI
44 Scalschi, L., Vicedo, B., Camanes, G., Fernandez-Crespo, E., Lapena, L., Gonzalez-Bosch, C. and Garcia-Agustin, P. 2013. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways. Mol. Plant Pathol. 14:342-355.   DOI
45 Conrath, U. 2009. Chapter 9. Priming of induced plant defense responses. In: Advances in botanical research, ed. by L. C. V. Loon, pp. 361-395. Academic Press, Burlington, MA, USA.
46 Debnath, B., Islam, W., Li, M., Sun, Y., Lu, X., Mitra, S., Hussain, M., Liu, S. and Qiu, D. 2019. Melatonin mediates enhancement of stress tolerance in plants. Int. J. Mol. Sci. 20:1040.   DOI
47 Djami-Tchatchou, A. T., Ncube, E. N., Steenkamp, P. A. and Dubery, I. A. 2017. Similar, but different: structurally related azelaic acid and hexanoic acid trigger differential metabolomic and transcriptomic responses in tobacco cells. BMC Plant Biol. 17:227.   DOI
48 Zhang, N., Zhang, H.-J., Zhao, B., Sun, Q.-Q., Cao, Y.-Y., Li, R., Wu, X.-X., Weeda, S., Li, L., Ren, S., Reiter, R. J. and Guo, Y.-D. 2014. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J. Pineal Res. 56:39-50.   DOI
49 Zhao, D., Yu, Y., Shen, Y., Liu, Q., Zhao, Z., Sharma, R. and Reiter, R. J. 2019. Melatonin synthesis and function: evolutionary history in animals and plants. Front. Endocrinol. 10:249.   DOI
50 Zhao, H., Xu, L., Su, T., Jiang, Y., Hu, L. and Ma, F. 2015. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. J. Pineal Res. 59:109-119.   DOI
51 Epstein, E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:641-664.   DOI
52 Gago-Zachert, S., Schuck, J., Weinholdt, C., Knoblich, M., Pantaleo, V., Grosse, I., Gursinsky, T. and Behrens, S.-E. 2019. Highly efficacious antiviral protection of plants by small interfering RNAs identified in vitro. Nucleic Acids Res. 47:9343-9357.   DOI
53 Gomez-Ariza, J., Campo, S., Rufat, M., Estopa, M., Messeguer, J., San Segundo, B. and Coca, M. 2007. Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mol. Plant-Microbe Interact. 20:832-842.   DOI
54 Guerriero, G., Stokes, I. and Exley, C. 2018. Is callose required for silicification in plants? Biol. Lett. 14:20180338.   DOI
55 Hardeland, R. 2016. Melatonin in plants: diversity of levels and multiplicity of functions. Front. Plant Sci. 7:198.   DOI
56 Wingler, A. 2018. Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle. Plant Physiol. 176:1075-1084.   DOI
57 Wan, J., Zhang, P., Wang, R., Sun, L., Ju, Q. and Xu, J. 2018. Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis. BMC Plant Biol. 18:362.   DOI
58 Weeda, S., Zhang, N., Zhao, X., Ndip, G., Guo, Y., Buck, G. A., Fu, C. and Ren, S. 2014. Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9:e93462.   DOI
59 Wei, J., Li, D.-X., Zhang, J.-R., Shan, C., Rengel, Z., Song, Z.- B. and Chen, Q. 2018. Phytomelatonin receptor PMTR1- mediated signaling regulates stomatal closure in Arabidopsis thaliana. J. Pineal Res. 65:e12500.   DOI
60 Yang, X. L., Xu, H., Li, D., Gao, X., Li, T. L. and Wang, R. 2018. Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56:884-892.   DOI
61 Yin, H., Zhao, X. and Du, Y. 2010. Oligochitosan: a plant diseases vaccine-a review. Carbohydr. Polym. 82:1-8.   DOI
62 Wang, N., Wang, L., Zhu, K., Hou, S., Chen, L., Mi, D., Gui, Y., Qi, Y., Jiang, C. and Guo, J.-H. 2019. Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Front. Microbiol. 10:98.   DOI
63 Llorens, E., Camanes, G., Lapena, L. and Garcia-Agustin, P. 2016. Priming by hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles. Front. Plant Sci. 7:495.
64 Kroumova, A. B., Xie, Z. and Wagner, G. J. 1994. A pathway for the biosynthesis of straight and branched, odd- and evenlength, medium-chain fatty acids in plants. Proc. Natl. Acad. Sci. U. S. A. 91:11437-11441.   DOI
65 Kuc, J. 1982. Induced immunity to plant disease. BioScience 32:854-860.   DOI
66 Li, H., Chang, J., Zheng, J., Dong, Y., Liu, Q., Yang, X., Wei, C., Zhang, Y., Ma, J. and Zhang, X. 2017. Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Sci. Rep. 7:40858.   DOI
67 Luna, E. 2016. Using green vaccination to brighten the agronomic future. Outlooks Pest Manag. 27:136-140.   DOI
68 Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V. and Ton, J. 2012. Next-generation systemic acquired resistance. Plant Physiol. 158:844-853.   DOI
69 Aranega-Bou, P., de la O. Leyva, M., Finiti, I., Garcia-Agustin, P. and Gonzalez-Bosch, C. 2014. Priming of plant resistance by natural compounds: hexanoic acid as a model. Front. Plant Sci. 5:488.
70 Hu, Y., Dong, Q. and Yu, D. 2012. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci. 185-186:288-297.   DOI
71 Arnao, M. B. 2014. Phytomelatonin: discovery, content, and role in plants. Adv. Bot. 2014:815769.
72 Han, W., He, P., Shao, L. and Lu, F. 2018. Metabolic interactions of a chain elongation microbiome. Appl. Environ. Microbiol. 84:e01614-18.
73 Hernandez-Ruiz, J. and Arnao, M. B. 2018. Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy 8:33.   DOI
74 Kauss, H., Seehaus, K., Franke, R., Gilbert, S., Dietrich, R. A. and Kroger, N. 2003. Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J. 33:87-95.   DOI
75 Kong, H. G., Song, G. C., Sim, H.-J. and Ryu, C.-M. 2020. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 15:397-408.
76 Laura, B., Silvia, P., Francesca, F., Benedetta, S. and Carla, C. 2018. Epigenetic control of defense genes following MeJAinduced priming in rice (O. sativa). J. Plant Physiol. 228:166-177.   DOI
77 Lee, H. Y. and Back, K. 2017. Melatonin is required for H2O2-and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J. Pineal Res. 62:e12379.   DOI
78 Dai, L., Li, J., Harmens, H., Zheng, X. and Zhang, C. 2020. Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiol. Biochem. 149:86-95.   DOI
79 Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T. C., Garcia-Sanchez, F., Rubio, F., Nortes, P. A., Mittler, R. and Rivero, R. M. 2018. Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:535.   DOI
80 Lee, H. Y., Byeon, Y. and Back, K. 2014. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J. Pineal Res. 57:262-268.   DOI
81 Moustafa-Farag, M., Almoneafy, A., Mahmoud, A., Elkelish, A., Arnao, M. B., Li, L. and Ai, S. 2019. Melatonin and its protective role against biotic stress impacts on plants. Biomolecules 10:54.   DOI
82 Arnao, M. B. and Hernandez-Ruiz, J. 2018. Melatonin in its relationship to plant hormones. Ann. Bot. 121:195-207.   DOI
83 Li, S., Xu, Y., Bi, Y., Zhang, B., Shen, S., Jiang, T. and Zheng, X. 2019. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest. Postharvest Biol. Technol. 157:110962.   DOI
84 Finiti, I., de la O. Leyva, M., Vicedo, B., Gomez-Pastor, R., Lopez-Cruz, J., Garcia-Agustin, P., Real, M. D. and GonzalezBosch, C. 2014. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress. Mol. Plant Pathol. 15:550-562.   DOI
85 Hasan, M. K., Liu, C.-X., Pan, Y.-T., Ahammed, G. J., Qi, Z.- Y. and Zhou, J. 2018. Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci. Rep. 8:10182.   DOI
86 Ahammed, G. J., Wu, M., Wang, Y., Yan, Y., Mao, Q., Ren, J., Ma, R., Liu, A. and Chen, S. 2020. Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Sci. Hortic. 265:109205.   DOI
87 Arnao, M. B. and Hernandez-Ruiz, J. 2014. Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 19:789-797.   DOI
88 Park, S.-W., Li, W., Viehhauser, A., He, B., Kim, S., Nilsson, A. K., Andersson, M. X., Kittle, J. D., Ambavaram, M. M. R., Luan, S., Esker, A. R., Tholl, D., Cimini, D., Ellerstrom, M., Coaker, G., Mitchell, T. K., Pereira, A., Dietz, K.-J. and Lawrence, C. B. 2013. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc. Natl. Acad. Sci. U. S. A. 110:9559-9564.   DOI
89 Kunkel, B. N. and Brooks, D. M. 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325-331.   DOI
90 Mauch-Mani, B., Baccelli, I., Luna, E. and Flors, V. 2017. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68:485-512.   DOI
91 Arnao, M. B. and Hernandez-Ruiz, J. 2020b. Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol. 23:7-19.
92 Llorens, E., Vicedo, B., Lopez, M. M., Lapena, L., Graham, J. H. and Garcia-Agustin, P. 2015. Induced resistance in sweet orange against Xanthomonas citri subsp. citri by hexanoic acid. Crop Prot. 74:77-84.   DOI