• Title/Summary/Keyword: Microbial Fuel Cells

Search Result 84, Processing Time 0.031 seconds

Characterization of Microbial Fuel Cells Enriched Using Cr(VI)-Containing Sludge

  • Ryu, Eun-Yeon;Kim, Mi-A;Lee, Sang-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.187-191
    • /
    • 2011
  • Microbial fuel cells (MFCs) were successfully enriched using sludge contaminated with Cr(VI) and their characteristics were investigated. After enrichment, the charge of the final 10 peaks was 0.51 C ${\pm}$ 1.16%, and the anodic electrode was found to be covered with a biofilm. The enriched MFCs removed 93% of 5 mg/l Cr(VI) and 61% of 25 mg/l Cr(VI). 16S rDNA DGGE profiles from the anodic electrode indicated that ${\beta}$-Proteobacteria, Actinobacteria, and Acinetobacter sp. dominated. This study is the first to report that electrochemically active and Cr(VI)-reducing bacteria could be enriched in the anode compartment of MFCs using Cr(VI)-containing sludge and demonstrates the Cr(VI) removal capability of such MFCs.

Effect of Ammonium and Nitrate on Current Generation Using Dual-Cathode Microbial Fuel Cells

  • Jang, Jae-Kyung;Choi, Jung-Eun;Ryou, Young-Sun;Lee, Sung-Hyoun;Lee, Eun-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.270-273
    • /
    • 2012
  • These studies were conducted to determine the effects of various concentrations of ammonium and nitrate on current generation using dual-cathode microbial fuel cells (MFCs). Current generation was not affected by ammonium up to $51.8{\pm}0.0$ mg/l, whereas $103.5{\pm}0.0$ mg/l ammonium chloride reduced the current slightly. On the other hand, when $60.0{\pm}0.0$ and $123.3{\pm}0.1$ mg/l nitrate were supplied, the current was decreased from $10.23{\pm}0.07$ mA to $3.20{\pm}0.24$ and $0.20{\pm}0.01$ mA, respectively. Nitrate did not seem to serve as a fuel for current generation in these studies. At this time, COD and nitrate removal were increased except at $123{\pm}0.1$ mg ${NO_3}^-/l$. These results show that proper management of ammonium and nitrate is very important for increasing the current in a microbial fuel cell.

Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA (가축 분뇨를 이용한 미생물 연료전지의 특성 및 MEA 열화)

  • Kim, Young-Sook;Chu, Cheun-Ho;Jeong, Jae-Jin;Ahn, Myung-Won;Na, Il-Chai;Lee, Jeong-Hoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.175-181
    • /
    • 2014
  • Microbial fuel cells (MFC) were operated with livestock wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). OCV of MFC with mixtures of microbial was higher than that of MFC with single microbial. MFC using pig wastes showed highest OCV (540 mV) among cow waste, chicken waste and duck waste. And the power density of MFC using pig waste was $963mW/m^2$. Contamination of MEA with $Na^{2+}$, $Ca^{2+}$, $K^+$ ion and impurities was the one cause for low performance of MFC during operation.

A Non-Pt Catalyst for Improved Oxygen Reduction Reaction in Microbial Fuel Cells

  • Kim, Jy-Yeon;Han, Sang-Beom;Oh, Sang-Eun;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • Fe-tetramethoxyphenylporphyrin on carbon black (Fe-TMPP/C) is examined and compared with carbon (C) and Pt-coated carbon (Pt/C) for oxygen reduction reaction in a two chambered microbial fuel cell (MFC). The Fe-TMPP/C is prepared by heat treatment and characterized using SEM, TEM, and XPS. The electrochemical properties of catalysts are characterized by voltammerty and single cell measurements. It is found that the power generation in the MFC with Fe-TMPP/C as the cathode is higher than that with Pt/C. The maximum power of the Fe-TMPP/C is 0.12 mW compared with 0.10 mW (Pt/C) and 0.02 mW (C). This high output with the Fe-TMPP/C indicates that MFCs are promising in further practical applications with low cost macrocycles catalysts.

Effect of Cathodic Biofilm on the Performance of Air-Cathode Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3726-3729
    • /
    • 2011
  • Biofilm formation is inevitable in a bioelectrochemical system in which microorganisms act as a sole biocatalyst. Cathodic biofilm (CBF) works as a double-edged sword in the performance of the air-cathode microbial fuel cells (MFCs). Proton and oxygen crossover through the CBF are limited by the robust structure of extracellular polymeric substances, composition of available constituents and environmental condition from which the biofilm is formed. The MFC performance in terms of power, current and coulombic efficiency is influenced by the nature and origin of CBF. Development of CBF from different ecological environment while keeping the same anode inoculums, contributes additional charge transfer resistance to the total internal resistance, with increase in coulombic efficiency at the expense of power reduction. This study demonstrates that MFC operation conditions need to be optimized on the choice of initial inoculum medium that leads to the biofilm formation on the air cathode.

Microwave-treated Expandable Graphite Granule for Enhancing the Bioelectricity Generation of Microbial Fuel Cells

  • Kim, Minsoo;Song, Young Eun;Li, Shuwei;Kim, Jung Rae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.297-301
    • /
    • 2021
  • Microbial fuel cells (MFCs) convert chemical energy to electrical energy via electrochemically active microorganisms. The interactions between microbes and the surface of a carbon electrode play a vital role in capturing the respiratory electrons from bacteria. Therefore, improvements in the electrochemical and physicochemical properties of carbon materials are essential for increasing performance. In this study, a microwave and sulfuric acid treatment was used to modify the surface structure of graphite granules. The prepared expandable graphite granules (EGG) exhibited a 1.5 times higher power density than the unmodified graphite granules (1400 vs. 900 mW/m3). Scanning electron microscopy and Fourier transform infrared spectroscopy revealed improved physical and chemical characteristics of the EGG surface. These results suggest that physical and chemical surface modification using sulfuric acid and microwave heating improves the performance of electrode-based bioprocesses, such as MFCs.

Analysis of Microbial Communities in Aquatic Sediment Microbial Fuel Cells Injected with Glucose (포도당을 주입한 수중퇴적물을 이용한 연료전지시스템에 있어서 미생물군집 분석)

  • Kim, Min;Ekpeghere, Kalu I.;Kim, Soo-Hyeon;Chang, Jae-Soo;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.254-261
    • /
    • 2012
  • The purpose of this research was to optimize electric current production of sediment microbial fuel cells by injecting glucose and to investigate its impact on microbial communities involved. It was shown that injection of proper concentration of glucose could increase electric current generated from sediment microbial fuel cells. When 1,000 mg/L of glucose, as opposed to higher concentrations, was injected, electric current increased up to 3 times. This increase is mainly attributed to the mutual relationship between fermenting bacteria and exoelectrogenic bacteria. Here the organic acids generated by fermenting bacteria could be utilized by exoelectrogenic bacteria, removing feedback inhibition caused by the organic acids. When glucose was injected, the population of Clostridium increased as to ferment injected glucose. Glucose fermentation can have either a positive or negative effect on electric current generation. When exoelectrogenic bacteria may readily utilize the end-product, electric current could increase. However, when the end-product was not readily removed, then detrimental chemical reactions (pH decrease, methane generation, organic acids accumulation) occurred: exoelctrogenic bacteria population declined and non-microbial fuel cell related microorganisms prospered. By injecting a proper concentration of glucose, a mutual relationship between fermenting bacteria, such as Clostridium, and exoelectrogenic bacteria, such as Geobacter, should be fulfilled in order to increase electricity production in mixed cultures of microorganisms collected from the aquatic sediments.

Application of Microbial Fuel Cells to Wastewater Treatment Systems Used in the Living Building Challenge (Living Building Challenge의 하수처리시스템에 대한 미생물 연료전지의 응용)

  • Lee, Chae-Young;Liu, Hong;Han, Sun-Kee
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-481
    • /
    • 2013
  • Objectives: This study was conducted to investigate the application of microbial fuel cells (MFCs) to the wastewater treatment systems employed in the Living Building Challenge. Methods: I reviewed a range of information on decentralized wastewater treatment technologies such as composting toilets, constructed wetlands, recirculating biofilters, membrane bioreactors, and MFCs. Results: The Living Building Challenge is a set of standards to make buildings more eco-friendly using renewable resources and self-treating water systems. Although there are various decentralized wastewater treatment technologies available, MFCs have been considered an attractive future option for a decentralized system as used in the Living Building Challenge. MFCs can directly convert substrate energy to electricity with high conversion efficiency at ambient and even at low temperatures. MFCs do not require energy input for aeration if using open-air cathodes. Moreover, MFCs have the potential for widespread application in locations lacking water and electrical infrastructure Conclusions: This paper demonstrated the feasibility of MFCs as a novel decentralized wastewater treatment system employed in the Living Building Challenge.

Optimal Metal Dose of Alternative Cathode Catalyst Considering Organic Substances in Single Chamber Microbial Fuel Cells

  • Nam, Joo-Youn;Moon, Chungman;Jeong, Emma;Lee, Won-Tae;Shin, Hang-Sik;Kim, Hyun-Woo
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.145-150
    • /
    • 2013
  • Optimal preparation guidelines of a cathode catalyst layer by non-precious metal catalysts were evaluated based on electrochemical performance in single-chamber microbial fuel cells (MFCs). Experiments for catalyst loading rate revealed that iron(II) phthalocyanine (FePc) can be a promising alternative, comparable to platinum (Pt) and cobalt tetramethoxyphenylporphyrin (CoTMPP), including effects of substrate concentration. Results showed that using an optimal FePc loading of $1mg/cm^2$ was equivalent to a Pt loading of $0.35mg/cm^2$ on the basis of maximum power density. Given higher loading rates or substrate concentrations, FePc proved to be a better alternative for Pt than CoTMPP. Under the optimal loading rate, it was further revealed that 40 wt% of FePc to carbon support allowed for the best power generation. These results suggest that proper control of the non-precious metal catalyst layer and substrate concentration are highly interrelated, and reveal how those combinations promote the economic power generation of single-chamber MFCs.

Effect of Electrode Configuration on the Substrate Degradation in Microbial Fuel Cells (미생물연료전지에서 전극구조가 기질분해에 미치는 영향 연구)

  • Shin, Yujin;Lee, Myoung-Eun;Park, Chi-Hoon;Ahn, Yongtae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.489-493
    • /
    • 2017
  • Microbial fuel cells (MFC) are bio-electrochemical processes that can convert various organic materials present in wastewater into electrical energy. For scaling-up and practical application of MFC, it is necessary to investigate the effect of anode size, electrode distance, and total area of anode on substrate degradation. Spaced electrode assembly (SPA) type microbial fuel cell with multiple anodes treating domestic wastewater was used for simulation. According to computer simulation results, the shorter the distance between electrodes than the size of single electrode, the faster the substrate degradation rate. Particularly, when the total area of the anode is large, the substrate decomposition is the fastest. In this study, it was found that the size of the anode and the distance between the electrodes as well as the cathode electrode, which is known as the rate-limiting step in the design of the microbial fuel cell process, are also important factors influencing the substrate degradation rate.