Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.10.3726

Effect of Cathodic Biofilm on the Performance of Air-Cathode Single Chamber Microbial Fuel Cells  

Ahmed, Jalal (Department of Bioscience and Biotechnology, Konkuk University)
Kim, Sung-Hyun (Department of Bioscience and Biotechnology, Konkuk University)
Publication Information
Abstract
Biofilm formation is inevitable in a bioelectrochemical system in which microorganisms act as a sole biocatalyst. Cathodic biofilm (CBF) works as a double-edged sword in the performance of the air-cathode microbial fuel cells (MFCs). Proton and oxygen crossover through the CBF are limited by the robust structure of extracellular polymeric substances, composition of available constituents and environmental condition from which the biofilm is formed. The MFC performance in terms of power, current and coulombic efficiency is influenced by the nature and origin of CBF. Development of CBF from different ecological environment while keeping the same anode inoculums, contributes additional charge transfer resistance to the total internal resistance, with increase in coulombic efficiency at the expense of power reduction. This study demonstrates that MFC operation conditions need to be optimized on the choice of initial inoculum medium that leads to the biofilm formation on the air cathode.
Keywords
Microbial fuel cell; Cathodic biofilm; Coulombic efficiency; Internal resistance; Extracellular polymeric substance;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Mclean, S. J.; Wanger, G.; Gorby, A. Y.; Wainstein, M.; Mcquaid, J.; Ishii, I. S.; Bretschger, O.; Beyenal, H.; Nealson, H. K. Environ. Sci. Technol. 2010, 44, 2721.   DOI   ScienceOn
2 Gregory, K. B.; Lovley, D. R. Environ. Sci. Technol. 2005, 39, 8943.   DOI   ScienceOn
3 Gregory, K. B.; Bond, D. R.; Lovley, D. R. Environ. Mirobiol. 2004, 6, 596.   DOI   ScienceOn
4 Clauwaert, P.; Rabaey, K.; Aeltrman, P.; De Schamphelaire, L.; Pham, T. H.; Boeckx, P.; Boon, N.; Verstraete, W. Environ. Sci. Technol. 2007, 41, 3355.
5 Chung, K.; Fujiki, I.; Okabe, S. Birores. Technol. 2011, 102, 355.   DOI   ScienceOn
6 Oh, S. E.; Kim, J. R.; Joo, J. H.; Logan, B. E. Water Sci. Technol. 2009, 60, 1311.   DOI   ScienceOn
7 Stoodley, P.; Sauer, K.; Davies, D. G.; Costerton, J. W. Annu. Rev. Microbiol. 2007, 56, 187-209.
8 Fan, Y. Z.; Hu, H. Q.; Liu, H. J. Power Sources 2007, 171, 348.   DOI   ScienceOn
9 Laspidou, C. S.; Rittmann, B. E. Water Res. 2004, 38, 3349.   DOI   ScienceOn
10 Sutherland, I. W. Microbiol. 2001, 147, 3.
11 Wingender, J.; Neu, T. R.; Flemming, H.-C. In Mirobial Extracellular Polymeric Substances: Characterization, Structure, and Function; Wingender, J., Neu, T. R., Flemming, H.-C., Eds.; Springer Verlag: Berlin, Germany, 1999; pp 1-19.
12 Logan, B. E.; Hamelers, B.; Rozendal, R.; Scrorder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Environ. Sci. Technol. 2006, 40, 5181.   DOI   ScienceOn
13 Pham, H. T.; Aelterman, P.; Verstraete, W. Trends Biotechnol. 2009, 27, 168.   DOI   ScienceOn
14 Zhang, X.; Cheng, S.; Wang, X.; Huang, X.; Logan, B. E. Environ. Sci. Technol. 2009, 43, 8456.   DOI   ScienceOn
15 Cheng, S.; Liu, H.; Logan, B. E. Environ. Sci. Technol. 2006, 40, 364.   DOI   ScienceOn
16 Torres, C. I.; Marcus, K. A.; Rittmann, B. E. Biotechnol. Bioeng. 2008, 100, 872.   DOI   ScienceOn
17 Cheng, S.; Liu, H.; Logan, B. E. Electrochem. Commun. 2006, 8, 489.   DOI   ScienceOn
18 Kim, J. R.; Cheng, S.; Oh, S. E.; Logan, B. E. Environ. Sci. Technol. 2007, 41, 1444.   DOI   ScienceOn
19 Sharma, Y.; Li, B. Biores. Technol. 2010, 101, 1844.   DOI   ScienceOn