DOI QR코드

DOI QR Code

Effect of Electrode Configuration on the Substrate Degradation in Microbial Fuel Cells

미생물연료전지에서 전극구조가 기질분해에 미치는 영향 연구

  • Shin, Yujin (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Lee, Myoung-Eun (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Park, Chi-Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Ahn, Yongtae (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
  • 신유진 (경남과학기술대학교 에너지공학과) ;
  • 이명은 (경남과학기술대학교 에너지공학과) ;
  • 박치훈 (경남과학기술대학교 에너지공학과) ;
  • 안용태 (경남과학기술대학교 에너지공학과)
  • Received : 2017.08.07
  • Accepted : 2017.08.18
  • Published : 2017.08.31

Abstract

Microbial fuel cells (MFC) are bio-electrochemical processes that can convert various organic materials present in wastewater into electrical energy. For scaling-up and practical application of MFC, it is necessary to investigate the effect of anode size, electrode distance, and total area of anode on substrate degradation. Spaced electrode assembly (SPA) type microbial fuel cell with multiple anodes treating domestic wastewater was used for simulation. According to computer simulation results, the shorter the distance between electrodes than the size of single electrode, the faster the substrate degradation rate. Particularly, when the total area of the anode is large, the substrate decomposition is the fastest. In this study, it was found that the size of the anode and the distance between the electrodes as well as the cathode electrode, which is known as the rate-limiting step in the design of the microbial fuel cell process, are also important factors influencing the substrate degradation rate.

미생물연료전지는 하폐수에 존재하는 다양한 유기성물질을 전기에너지로 변환시킬 수 있는 생물전기화학적공정이다. 본 연구에서는 전산모사를 통하여 산화전극의 크기, 전극간 거리, 전체 산화전극면적이 기질분해에 미치는 영향을 알아보고자 하였다. 생활하수를 처리하는 다중산화전극 및 SPA (Spaced electrode assembly)형 연속식 미생물연료전지공정을 모사하였으며, 전산모사결과에 따르면 단일전극의 크기에 의한 영향보다는 전극간 거리가 짧을수록 기질분해속도가 빠른 것으로 나타났다. 특히 전체 산화전극의 면적이 큰 경우가 기질분해가 가장 빠른 것으로 나타났다. 본 연구를 통하여 미생물연료전지공정의 설계에 있어서 율속단계로 알려진 환원전극의 크기 외에도 산화전극의 크기 및 전극간 거리 또한 기질분해 속도에 영향을 미칠 수 있는 중요한 인자임을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 경남과학기술대학교

References

  1. Santoro, C., Arbizzani, C., Erable, B. and Leropoulos, I., "Microbial fuel cells: From fundamentals to applications. A review," J. Power Sour., 356, 225-244(2017). https://doi.org/10.1016/j.jpowsour.2017.03.109
  2. Kim, J., Kim, B., Kim, H. and Yun, Z., "Effect of the Organic and Nitrogen Removal and Electricity Production on Changing the External Resistor and the Inflow Loading in the Biocathode Microbial Fuel Cell," J. Korean Soc. Water Envrion., 31(5), 556-562(2015). https://doi.org/10.15681/KSWE.2015.31.5.556
  3. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K., "Microbial fuel cells : methodology and technology," Environ. Sci. Technol., 40, 5181-5192(2006). https://doi.org/10.1021/es0605016
  4. Logan, B. E., "Microbial fuel cells," Wiley-Interscience (2007).
  5. Jung, S., "Practical implementation of microbial fuel cells for bioelectrochemical wastewater treatment," J. Korean Soc. Urban Envrion., 13(2), 93-100(2013).
  6. Logan, B. and Rabaey, K., "Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies," Sci., 337(6095), 686-690(2012). https://doi.org/10.1126/science.1217412
  7. Park, Y., Yu, J, Nguyen, T. H. and Lee, T., "Nitrogen removal in flat-panel air-cathode microbial fuel cell according to various inoculum sources and organic concentration," J. Korean Soc. Environ. Eng., 38(12), 635-640(2016). https://doi.org/10.4491/KSEE.2016.38.12.635
  8. Wang, Z., Mahadevan, G. D., Wu, Y. and Zhao, F., "Progress of air-breathing cathode in microbial fuel cells," J. Power Sour., 356, 245-255(2017). https://doi.org/10.1016/j.jpowsour.2017.02.004
  9. Ahn, Y., Hatzell, M. C., Zhang, F. and Logan, E., "Different electrode configurations to optimize performance of multielectrode microbial fuel cells for generating power or treating domestic wastewater," J. Power Sour., 249, 440-445(2014). https://doi.org/10.1016/j.jpowsour.2013.10.081
  10. Yoon, H., Song, Y. and Choi, T., "Improvement of Anodic Performance by Using CTP Binder Containg Nickel," J. Korean Soc. Environ. Eng., 37(9), 499-504(2015). https://doi.org/10.4491/KSEE.2015.37.9.499
  11. Mustakeem, "Electrode materials for microbial fuel cells: nanomaterial approach," Mater. Renewable and Sust. Energy, 4(4), 22(2015). https://doi.org/10.1007/s40243-015-0063-8
  12. Jiang, D., Li, Z., Raymond, D. and Li, B., "Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications," Int. J. Hydro. Energy, 35(16), 8683-8689(2010). https://doi.org/10.1016/j.ijhydene.2010.04.136
  13. Lanas, V., Ahn, Y. and Logan, B. E., "Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode," J. Power Sour., 247, 228-234(2014). https://doi.org/10.1016/j.jpowsour.2013.08.110
  14. Logan, B. E., et al., "Assessment of Microbial Fuel Cell Configurations and Power Densities," Environ. Sci. Technol. Lett., 2(8), 206-214(2015). https://doi.org/10.1021/acs.estlett.5b00180