• Title/Summary/Keyword: Microbial Community

Search Result 787, Processing Time 0.038 seconds

Analysis on the Microbial Community Structure of Red Granule in the Anaerobic Ammonium Oxidation Reactor (혐기성 암모늄 산화 반응기 내 붉은색 입상슬러지의 미생물 군집구조 분석)

  • Bae, Hyo-Kwan;Park, Kyung-Soon;Chung, Yun-Chul;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1055-1064
    • /
    • 2006
  • Extremely slow growing anammox(anaerobic ammonium oxidation) bacteria were cultivated using a combination of UASB(Upflow Anaerobic Sludge Blanket) reactor seeded with anaerobic granular sludge and carbon-fiber cultivating reactor. After 180 days of continuous cultivation, average nitrogen removal rate showed 0.54 kg $N/m^3-day$ when 0.6 kg $N/m^3-day$ of nitrogen loading was applied. The black granule was changed to brown and red granule as continuous operation, and the red granule was highly dependant on the high anammox activity. Microbial community structure of red granule in the UASB reactor was analyzed by molecular methods such as gene cloning, phylogenetic tree analysis, and FISH(Fluorescence In Situ Hybridization) method. As a result of gene cloning and phylogenetic tree analysis, 5 kinds of phylum were found to be Planctomycetes, Proteobacteria, Acidobacteria, Chlorobi and Chloroflexi. 13 clones were matched to anammox bacteria among 51 clones in the red anammox granule. In-silico test which used cloning information and FISH probe of the AMX368 was conducted to detect the presence of anammox bacteria in the red anammox granule. As a result of in-silico test only one clone was exactly matched to AMX368 but 11 clones was mutated one base among 18 bases representing all 12 clones are anammox bacteria. A filamentous Chloroflexi might be related to the granulation of anammox bacteria. As a result of FISH analysis, anammox bacteria was abundant in the red anammox granule.

Assessing Water Quality of Siheung Stream in Shihwa Industrial Complex Using Both Principal Component Analysis and Multi-Dimensional Scaling Analysis of Korean Water Quality Index and Microbial Community Data (Principal Component Analysis와 Multi-Dimensional Scaling 분석을 이용한 시화공단 시흥천의 수질지표 및 미생물 군집 분포 연구)

  • Seo, Kyeong-Jin;Kim, Ju-Mi;Kim, Min-Jung;Kim, Seong-Keun;Lee, Ji-Eun;Kim, In-Young;Zoh, Kyung-Duk;Ko, Gwang-Pyo
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.517-525
    • /
    • 2009
  • The water quality of Lake Shihwa had been rapidly deteriorating since 1994 due to wastewater input from the watersheds, limited water circulation and the lack of a wastewater treatment policy. In 2000, the government decided to open the tidal embankment and make a comprehensive management plan to improve the water quality, especially inflowing stream water around Shihwa and Banwol industrial complex. However, the water quality and microbial community have not as yet been fully evaluated. The purpose of this study is to investigate the influent water quality around the industrial area based on chemical and biological analysis, and collected surface water sample from the Siheung Stream, up-stream to down-stream through the industrial complex, Samples were collected in July 2009. The results show that the downstream site near the industrial complex had higher concentrations of heavy metals (Cu, Mn, Fe, Mg, and Zn) and organic matter than upstream sites. A combination of DGGE (Denaturing Gradient Gel Electrophoresis) gels, lists of K-WQI (Korean Water Quality Index), cluster analysis, MDS (Multi-Dimensional Scaling) and PCA (Principal Component Analysis) has demonstrated clear clustering between Siheung stream 3 and 4 and with a high similarity and detected metal reducing bacteria (Shewanella spp.) and biodegrading bacteria (Acinetobacter spp.). These results suggest that use of both chemical and microbiological marker would be useful to fully evaluate the water quality.

Comparison Analysis of Swine Gut Microbiota between Landrace and Yorkshire at Various Growth Stages (두 돼지 종의 다양한 성장단계에 따른 장내미생물 비교분석)

  • Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.308-312
    • /
    • 2014
  • In this study, we conducted a next generation sequencing based microbial community analysis to investigate gut microbiota of the two commercially most available swine breeds, Yorkshire and Landrace. Bacterial 16S rRNA gene was amplified from fecal DNA using universal primer sets designed for V4 regions. Our comparison analysis of the gut microbiota of the two breeds suggested that their gut microbiota changed depending on the growth stages, while the difference between the two breeds was insignificant. However, there was a limited number of genera, the abundance of which was found to be different between the breeds. Those included the genus Xylanibacter in the Yorkshire samples, which was previously reported as a fiber digesting bacteria, likely increasing energy harvesting capacity of swine. In addition, others included opportunistic pathogens mostly found in the Yorkshire samples while the Landrace samples had significantly more prevalent Clostridium_IV species that were known to play a key role in systemic immunity of hosts. While microbial community shifts was found to be associated with growth stages, the difference between the two breeds seemed to be insignificant. However, there were several bacterial genera showing differential abundance, which may affect growth of hosts.

Molecular and Ecological Analyses of Microbial Community Structures in Biofilms of a Full-Scale Aerated Up-Flow Biobead Process

  • Ju, Dong-Hun;Choi, Min-Kyung;Ahn, Jae-Hyung;Kim, Mi-Hwa;Cho, Jae-Chang;Kim, Tae-Sung;Kim, Tae-San;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.253-261
    • /
    • 2007
  • Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.

Role and Principle of Lowering Storage Temperature : Methane Emission and Microbial Community of Cattle Manure (저온 저장의 역할과 원리: 우분의 메탄 배출과 미생물 군집)

  • Im, Seongwon;Oh, Sae-Eun;Hong, Do-giy;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.41-49
    • /
    • 2019
  • Livestock manure is a significant source for greenhouse gas (GHG) emission, and a huge amount of GHG emission is generated during its storage. In the present work, lowering temperature was attempted to mitigate methane ($CH_4$) emission from cattle manure (CM) with high solid content. CM was stored for 60 d at $15-35^{\circ}C$ ($5^{\circ}C$ interval). $CH_4$ emission reached $63.6{\pm}3.6kg\;CO_2\;eq./ton\;CM$ at $35^{\circ}C$, which was reduced to $51.6{\pm}1.8$, $24.1{\pm}4.4$, $14.9{\pm}0.5$, and $3.7{\pm}0.1kg\;CO_2\;eq./ton\;CM$ at 30, 25, 20, and $15^{\circ}C$, respectively. After storage, 30% of COD reduction was observed in the CM stored at $35^{\circ}C$, while the COD removal decreased to only 6% at $15^{\circ}C$. It was found that only 3-11% of COD removal was done by anaerobic process, while the rest of COD removal was done by aerobic biological process. Methanobrevibacter and Methanolobus were found to be the dominant species in the CM, and the dominance of Methanolobus psychrophilus increased at lower storage temperature. Specific methanogenic activity test results showed that the inhibition by low temperature was temporal.

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Establishment, Bacterial Community and Performance Evaluation

  • Pham, Hai The;Tran, Hien Thi;Vu, Linh Thuy;Dang, Hien The;Nguyen, Thuy Thu Thi;Dang, Thu Ha Thi;Nguyen, Mai Thanh Thi;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1104-1116
    • /
    • 2019
  • In this study, we investigated the potential of using sediment bioelectrochemical systems (SBESs) for in situ treatment of the water and sediment in brackish aquaculture ponds polluted with uneaten feed. An SBES integrated into a laboratory-scale tank simulating a brackish aquaculture pond was established. This test tank and the control (not containing the SBES) were fed with shrimp feed in a scheme that mimics a situation where 50% of feed is uneaten. After the SBES was inoculated with microbial sources from actual shrimp pond sediments, electricity generation was well observed from the first experimental week, indicating successful enrichment of electrochemically active bacteria in the test tank sediment. The electricity generation became steady after 3 weeks of operation, with an average current density of $2.3mA/m^2$ anode surface and an average power density of $0.05mW/m^2$ anode surface. The SBES removed 20-30% more COD of the tank water, compared to the control. After 1 year, the SBES also reduced the amount of sediment in the tank by 40% and thus could remove approximately 40% more COD and approximately 52% more nitrogen from the sediment, compared to the control. Insignificant amounts of nitrite and nitrate were detected, suggesting complete removal of nitrogen by the system. PCR-DGGE-based analyses revealed the dominant presence of Methylophilus rhizosphaerae, Desulfatitalea tepidiphila and Thiothrix eikelboomii, which have not been found in bioelectrochemical systems before, in the bacterial community in the sediment of the SBES-containing tank. The results of this research demonstrate the potential application of SBESs in helping to reduce water pollution threats, fish and shrimp disease risks, and thus farmers' losses.

Appropriate Soil Heat Treatment Promotes Growth and Disease Suppression of Panax notoginseng by Interfering with the Bacterial Community

  • Li, Ying-Bin;Zhang, Zhi-Ping;Yuan, Ye;Huang, Hui-Chuan;Mei, Xin-Yue;Du, Fen;Yang, Min;Liu, Yi-Xiang;Zhu, Shu-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.294-301
    • /
    • 2022
  • In our greenhouse experiment, soil heat treatment groups (50, 80, and 121℃) significantly promoted growth and disease suppression of Panax notoginseng in consecutively cultivated soil (CCS) samples (p < 0.01), and 80℃ worked better than 50℃ and 121℃ (p < 0.01). Furthermore, we found that heat treatment at 80℃ changes the microbial diversity in CCS, and the inhibition ratios of culturable microorganisms, such as fungi and actinomycetes, were nearly 100%. However, the heat-tolerant bacterial community was preserved. The 16S rRNA gene and internal transcribed spacer (ITS) sequencing analyses indicated that the soil heat treatment had a greater effect on the Chao1 index and Shannon's diversity index of bacteria than fungi, and the relative abundances of Firmicutes and Proteobacteria were significantly higher than without heating (80 and 121℃, p < 0.05). Soil probiotic bacteria, such as Bacillus (67%), Sporosarcina (9%), Paenibacillus (6%), Paenisporosarcina (6%), and Cohnella (4%), remained in the soil after the 80℃ and 121℃ heat treatments. Although steam increased the relative abundances of most of the heat-tolerant microbes before sowing, richness and diversity gradually recovered to the level of CCS, regardless of fungi or bacteria, after replanting. Thus, we added heat-tolerant microbes (such as Bacillus) after steaming, which reduced the relative abundance of pathogens, recruited antagonistic bacteria, and provided a long-term protective effect compared to the steaming and Bacillus alone (p < 0.05). Taken together, the current study provides novel insight into sustainable agriculture in a consecutively cultivated system.

A Study on Biogas Production from Low Rank Coal in a Column Experiment (저품위 석탄을 충전한 칼럼실험에서의 바이오가스 생산에 관한 연구)

  • Yoon, Seok-Pyo;Lim, Hak-Sang;Yun, Yeo-Myeong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • In a column experiment with low rank coal, rice straw was additionally supplied to induce methane gas generation by microorganisms in the state of supplying microorganisms and nutrients, and long-term biogas production characteristics were observed. When the weight ratio of the rice straw to coal was 0.04 or less, there was no significant gas generation. At 0.08, the biogas was generated for about 90 days. However, the methane gas generation was only 5% compared with the vial test result at optimum condition. Therefore, in order to produce biogas in the coal deposit in situ, a reactor that operates at COD concentration of 2000 mg/L or more at a ratio of 1:3 or more of rice straw to coal should be installed on the ground or under the ground. Liquid from the column filled with coal and rice straw and a liquid from vial containing rice straw were analyzed by microbial community analysis using pyrosequencing method, and compared the dominant microbial species among the two samples. In terms of the uniformity and diversity of the bacteria, the coal-filled column showed various species distribution, which has shown to be a disadvantageous microbial distribution to methane production.

Microbial Communities in Rice Paddy Soils Following Cultivation of Genetically Modified Leaf Folder-resistant Rice Plants (혹명나방 저항성벼 재배 논토양의 미생물상)

  • Kwon, Jang-Sik;Noh, Hyung-Jun;Suh, Jang-Sun;Shin, Kong-Sik;Kweon, Soon-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • The study was performed to investigate the property of rhizosphere microorganisms, and community structure during GMO, and Non-GMO rice cultivation. In the dilution plate technique, there were no significant differences in microbial populations of rhizosplane with genetically modified, and non-genetically modified rice cultivation, and rhizosphere were also the same results. Dominant bacterial genera were Afipia 12.5%, Spingomonas 10.0%, Ramlibacter 10.0%, Mycobacterium 7.5%, and Tetrasphaera 7.5% in rhizosphere soil of genetically modified rice plant, while Afipia 7.3%, Spingomonas 12.2%, Ramlibacter 7.3%, Mycobacterium 17.1%, Tetrasphaera 14.6% in non-genetically modified cultivated at Suwon test fields in 2006. Majorgenera isolated from root surface cultivated in Yesan fields were Arthrobacter 12.7% in rhizoplane of genetically modified plant, and Burkholderia 22.2% of non-genetically modified plant in 2007, Paucimonas 26.6% of genetically modified plant, Chryseobacterium 15.4% of non-genetically modified plant in 2008. Also the microbial communities in rhizosphere soils of genetically modified, and non-genetically modified plants were characterized using phospholipid fatty acid, and denaturing gradient gel electrophoresis. The phospholipid fatty acid profiles of soils in this condition showed different pattern, but did not show significant differences between soils cultivated with genetically or non-genetically modified rice plants.

Anaerobic dechlorinating enrichment culture on tetrachloroethene (PCE) (PCE 탈염소화를 위한 혐기성배양)

  • Kim, Byung-Hyuk;Baek, Kyung-Hwa;Sung, Youl-Boong;Choi, Gang-Kook;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.185-185
    • /
    • 2007
  • Starting at the beginning q the 20th century, increasing amounts of tetrach1oroethene (PCE) and trichloroethene (TCE)were manufactured due to the extensive use of these compounds in industry, in the military, and in private households, mainly as nonflammable solvents. This widespread use, along with careless handling and storage, are among the most serious contaminants of soil, sediment and groundwater. Highly chlorinated ethenes are typically not degraded through oxygenation by aerobic bacteria Since complete reductive dechlorination of PCE and TCE to ethene (ETH) has been observed in anaerobic enrichment culture, anaerobic dehalorespiring bacteria have received increased attention in the last decade. Under anaerobic conditions, these compounds con be reductively dehalogenated to less-chlorinated ethenes or innocuous ethene by microorganism through dehalorespiration. We have been studying anaerobic enrichment culture which used lactate as the electron donor for reductive dechlorination of PCE to ETH the anaerobic mixed microbial culture was enriched from the sediment sample taken from site contaminated with PCE. PCE was consistently and completely converted to ethene. In addition, the accumulation of intermediate products such as 1,2-ds-dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the anaerobic mixed microbial culture. the established dechlorinating enrichment culture was analyzed by DGGE using primers specific to DefrJ1ococcoides 16S rRNA gene sequences. In conclusion, we established the PCE dechlorinating enrichment culture and confirmed the existence of Dehalococcoides in an enrichment culture.

  • PDF