Analysis on the Microbial Community Structure of Red Granule in the Anaerobic Ammonium Oxidation Reactor

혐기성 암모늄 산화 반응기 내 붉은색 입상슬러지의 미생물 군집구조 분석

  • Bae, Hyo-Kwan (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Park, Kyung-Soon (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Chung, Yun-Chul (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Jung, Jin-Young (Environment & Process Technology Division, Korea Institute of Science and Technology)
  • 배효관 (한국과학기술연구원 환경공정연구부) ;
  • 박경순 (한국과학기술연구원 환경공정연구부) ;
  • 정윤철 (한국과학기술연구원 환경공정연구부) ;
  • 정진영 (한국과학기술연구원 환경공정연구부)
  • Published : 2006.10.31

Abstract

Extremely slow growing anammox(anaerobic ammonium oxidation) bacteria were cultivated using a combination of UASB(Upflow Anaerobic Sludge Blanket) reactor seeded with anaerobic granular sludge and carbon-fiber cultivating reactor. After 180 days of continuous cultivation, average nitrogen removal rate showed 0.54 kg $N/m^3-day$ when 0.6 kg $N/m^3-day$ of nitrogen loading was applied. The black granule was changed to brown and red granule as continuous operation, and the red granule was highly dependant on the high anammox activity. Microbial community structure of red granule in the UASB reactor was analyzed by molecular methods such as gene cloning, phylogenetic tree analysis, and FISH(Fluorescence In Situ Hybridization) method. As a result of gene cloning and phylogenetic tree analysis, 5 kinds of phylum were found to be Planctomycetes, Proteobacteria, Acidobacteria, Chlorobi and Chloroflexi. 13 clones were matched to anammox bacteria among 51 clones in the red anammox granule. In-silico test which used cloning information and FISH probe of the AMX368 was conducted to detect the presence of anammox bacteria in the red anammox granule. As a result of in-silico test only one clone was exactly matched to AMX368 but 11 clones was mutated one base among 18 bases representing all 12 clones are anammox bacteria. A filamentous Chloroflexi might be related to the granulation of anammox bacteria. As a result of FISH analysis, anammox bacteria was abundant in the red anammox granule.

본 연구소에서는 혐기성 입상슬러지를 충진한 UASB 반응기와 탄소섬유를 충진한 배양기를 조합하여 아주 느린 성장특성을 가진 혐기성 암모늄 산화균의 배양을 시도하였다. 연속배양 180일 이후, 유입질소부하가 0.6 kg $N/m^3-d$였을 때, 평균 질소전환율은 0.54 kg $N/m^3-d$로 나타났다. 검은 혐기성 입상슬러지는 연속배양시간이 지남에 따라 갈색과 붉은 색으로 변화되었으며, anammox 반응기는 붉은색 입상슬러지가 많을수록 높은 활성도를 나타내었다. 따라서, 붉은색 입상슬러지를 채취하여 분자생물학적 방법을 이용하여 미생물 군집구조를 분석하였다. 클로닝 및 계통분류학적 분지도 작성 결과, anammox UASB 반응조의 붉은색 입상슬러지에서 발견된 미생물 종류는 anammox 미생물과 더불어 문단위의 4가지 다른 미생물, Proteobacteria, Acidobacteria, Chlorobi와 Chloroflexi로 나타났다. Anammox UASB 반응조내의 붉은색 입상슬러지에서는 clone의 개수를 기준으로 anammox 미생물이 약 25%가 존재하였고 $\beta$-proteobacteria가 우점하고 있는 양상을 보여주었으며, 본 연구의 클로닝 정보와 AMX368 FISH 탐침자를 이용해 in silico 실험을 수행한 결과 AMX368과 정확히 들어맞는 anammox 미생물 clone 하나와 하나의 염기서열이 변이를 일으킨 11개의 anammox 미생물 clone을 확인할 수 있었다. 사상균 형태의 Chloroflexi는 혐기조건 입상 슬러지의 형성과 관련이 있는 것으로 판단되었다. FISH 수행결과, anammox 미생물은 붉은색 입상 슬러지에 우점하고 있는 것으로 나타났다.

Keywords

References

  1. Hellinga, C., Schellen, A. A. J. C., Mulder, J. W., van Loosdrecht, M. C. M., and Heijnen, J. J., 'The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water,' Water Sci. Technol., 37, 135-142(1998) https://doi.org/10.1016/S0273-1223(98)00281-9
  2. Mulder, J. W., van Loosdrecht, M. C. M., Hellinga, C., and van Kempen, R., 'Full scale application of the SHARON process for treatment of rejection water of digested sludge dewatering,' Water Sci. Technol., 43, 127 - 134(2001) https://doi.org/10.2166/wst.2001.0675
  3. Jetten, M. S. M., Wagner, M., Fuerst, J., van Loosdercht, M. C. M., Kuenen, J. G., and Strous, M., 'Microbiology and application of the anaerobic ammonium oxidation(' anammox') process,' Curr. Opin. Biotech., 12, 283 -288(2001) https://doi.org/10.1016/S0958-1669(00)00211-1
  4. van Dongen, D., Jetten, M. S., and van Loosdrecht, M. C., 'The SHARON-Anammox process for treatment of ammonium rich wastewater,' Water Sci. Technol., 44, 153-160(2001)
  5. Mulder, A, van de Graaf, A. A., Robertson, L. A,, and Kuenen, J. G., 'Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor,' FEMS Microbiol. Ecol., 16, 177- 183(1995) https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  6. Strous, M., Heijnen, J. J., Kuenen, J. G., and Jetten, M. S. M., 'The sequencing batch reactor as a powerful tool to study very slowly growing micro-organisms,' Appl. Microbiol. Biotechnol., 50, 589 - 596(1998) https://doi.org/10.1007/s002530051340
  7. van de Graaf, A. A., Mulder, A., de Bruijn, P., Jetten, M. S., Robertson, L. A., and Kuenen, J. G., 'Anaerobic Anaerobic oxidation of ammonium is a biologically mediated process,' Appl. Environ. Microbiol., 61, 1246-1251(1995)
  8. Egli, K., Fanger, D., Pedro, J. J. A., Siegrist, H., van der Meer, J. R., and Zehnder, A. J. B., 'Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate,' Arch. Microbiol., 175, 198-207(2001) https://doi.org/10.1007/s002030100255
  9. Strous, M., van Gerven, E., Zheng, P., Kuenen, J. G., and Jetten, M. S. M., 'Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation(anammox) process in different reactor configurations,' Water Res., 31, 1955-1962(1997) https://doi.org/10.1016/S0043-1354(97)00055-9
  10. Thamdrup, B. and Dalsgaard, T., 'Production of $N_2$ through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments,' Appl. Environ. Microbiol., 68, 1312-1318(2002) https://doi.org/10.1128/AEM.68.3.1312-1318.2002
  11. Toh, S. K., Webb, R. I., and Ashbolt, N. J., 'Enrichment of Autotrophic Anaerobic Ammonium-Oxidizing Consortia from Various Wastewaters,' Microb. Ecol., 43, 154- 167(2002) https://doi.org/10.1007/s00248-001-0033-9
  12. Jetten, M. S. M., Sliekers, O., Kuypers, M., Dalsgaard, T., van Niftrik, L., Cirpus, I., van de Pas-Schoonen, K., Lavik, G., Thamdrup, B., Le Paslier, D., Op den Camp, H. J. M., Hulth, S., Nielsen, L. P., Abma, W., Third, K., Engstrom, P., Kuenen, J. G., Jorgensen, B. B., Canfield, D. E., Sinninghe Damste, J. S., Revsbech, N. P., Fuerst, J., Weissenbach, J., Wagner, M., Schmidt, I., Schmid, M., and Strous, M., 'Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria,' Appl. Microbiol. Biotechnol., 63, 107- 114(2003) https://doi.org/10.1007/s00253-003-1422-4
  13. Kual, L. and Verstraete, W., 'Ammonium removal by the oxygen limited autotrophic nitrification-denitrification system,' Appl. Environ. Microbiol., 64, 4500-4506(1998)
  14. Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K. T., Webb, R. I., Kuenen, J. G., and Jetten, M. S. M., 'Missing lithotroph identified as new planctomycete,' Nature, 400, 446-449(1999) https://doi.org/10.1038/22749
  15. Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J. W., Schleifer, K. H., and Wagner, M., 'Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation,' Syst. Appl. Microbiol., 23, 93 - 106 (2000) https://doi.org/10.1016/S0723-2020(00)80050-8
  16. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A., and Harada, H., 'Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in methophilic and thermophilic sludge granules,' Appl. Environ. Microbiol., 65, 1280-1288(1999)
  17. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A., and Harada, H., 'Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acidoxidizing anaerobe which utilizes isobutyrate,' Int. J. Syst. Evol. Microbiol., 50, 771 -779(2000) https://doi.org/10.1099/00207713-50-2-771
  18. Sekiguchi, Y., Takahashi, H., Kamagata, Y., Ohashi, A., and Harada, H., 'In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I,' Appl. Environ. Microbiol., 67, 5740 - 5749(2001) https://doi.org/10.1128/AEM.67.12.5740-5749.2001
  19. Schmid, M. C., Maas, B., Dapena, A., van de PasSchoonen, K., van de Vossenberg, J., Kartal, B., van Niftrik, L., Schmidt, I., Cirpus, I., Kuenen, J. G., Wagner, M., Sinninghe Damste, J. S., Kuypers, M., Revsbech, N. P., Mendez, R., Jetten, M. S., and Strous, M., 'Biomarkers for in situ detection of anaerobic ammoniumoxidizing(anammox) bacteria,' Appl. Environ. Microbiol., 71, 1677- 1684(2005) https://doi.org/10.1128/AEM.71.4.1677-1684.2005
  20. Van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. M., and Kuenen, J. G. 'Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor,' Microbiol., 142, 2187-2196(1996) https://doi.org/10.1099/13500872-142-8-2187