• Title/Summary/Keyword: Micro.Nano scale structure

Search Result 59, Processing Time 0.033 seconds

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface (알루미늄의 발수 표면처리 기술 개발)

  • Byun, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Kuk;Kim, Yang-Do;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.4
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

Exploring precise deposition and influence mechanism for micro-scale serpentine structure fiber

  • Wang, Han;Ou, Weicheng;Zhong, Huiyu;He, Jingfan;Wang, Zuyong;Cai, Nian;Chen, XinDu;Xue, Zengxi;Liao, Jianxiang;Zhan, Daohua;Yao, Jingsong;Wu, Peixuan
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.151-165
    • /
    • 2022
  • Micro-scale serpentine structure fibers are widely used as flexible sensor in the manufacturing of micro-nano flexible electronic devices because of their outstanding non-linear mechanical properties and organizational flexibility. The use of melt electrowriting (MEW) technology, combined with the axial bending effect of the Taylor cone jet in the process, can achieve the micro-scale serpentine structure fibers. Due to the interference of the process parameters, it is still challenging to achieve the precise deposition of micro-scale and high-consistency serpentine structure fibers. In this paper, the micro-scale serpentine structure fiber is produced by MEW combined with axial bending effect. Based on the controlled deposition of MEW, applied voltage, collector speed, nozzle height and nozzle diameter are adjusted to achieve the precise deposition of micro-scale serpentine structure fibers with different morphologies in a single motion dimension. Finally, the influence mechanism of the above four parameters on the precise deposition of micro-scale serpentine fibers is explored.

Fabrication of Nano-Size Specimens for Tensile Test Employing Nano-Indentation Device (나노 인장시험을 위한 압축 시험기용 인장시편 제작에 관한 연구)

  • Lim, Tae Woo;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.911-916
    • /
    • 2015
  • In the nano/micro scale, material properties are dependent on the size-scale of a structure. However, conventional micro-scale tensile tests have limitations to obtain reliable values of nano-scale material properties owing to residual stress and elastic slippage in the gripping/aligning process. The indenter-driven nano-scale tensile test provides prominent advantages simple testing device, high-quality nano-scale metallic specimen with negligible residual stress. In this paper, two-types of specimens (a specimen with multi-testing parts and a specimen with a single-testing part) are discussed. Focused ion beam (FIB) is employed to fabricate a nano-scale specimen from a thin nickel film. Using the specimen with a single-testing part, we obtained a nano-scale stress-strain curve of electroplated nickel film.

Micro Metal Injection Molding Using Hybrid Micro/Nano Powders

  • Nishiyabu, Kazuaki;Kakishita, Kenichi;Osada, Toshiko;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.36-37
    • /
    • 2006
  • This study aims to investigate the usage of nano-scale particles in a micro metal injection molding ($\mu$-MIM) process. Nanoscale particle is effective to improve transcription and surface roughness in small structure. Moreover, the effects of hybrid micro/nano particles, Cu/Cu and SUS/Cu were investigated. Small dumbbell specimens were produced using various feedstocks prepared by changing binder content and fraction of nano-scale Cu particle (0.3 and $0.13{\mu}m$ in particle size). The effects of adding the fraction of nano-scale Cu powder on the melt viscosity of the feedstock, microstructure, density and tensile strength of sintered parts were discussed.

  • PDF

A study on stress-strain relation measurement for micro scale UV-curable polymer structure (UV-경화 폴리머 마이크로 구조물의 응력-변형률 관계 측정에 관한 연구)

  • Jeong S.J.;Kim J.H.;Lee H.J.;Park S.H.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.492-497
    • /
    • 2005
  • In this study, we propose an advanced nanoindentaion test, Nano Pillar Compression Test (NPCT) to measure a stress-strain relation for micro scale polymer structures. Firstly, FEM analysis is performed to research behavior of micro polymer pillars in several specimen aspect ratios and different friction conditions between specimen and tip. Based on the FEM results, micro scale UV-curable polymer pillars are fabricated on a substrate by Nano Stereo Lithography (NSL). To measure their mechanical properties, uniaxial compression test is performed using nanoindentation apparatus with flat-ended diamond tip. In addition, the dependency of compression properties on loading condition and specimen size are discussed.

  • PDF

Relationship between Replication and Structure of Micro/Nano Molded Parts

  • Ito, Hiroshi;Kazama, Kunihiko;Kikutani, Takeshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.368-368
    • /
    • 2006
  • Micro-molded parts can be defined as parts with microgram weight, parts with micro-structured surface, and parts with micro-precision. In this study, various micro-scale molded parts for various polymers were produced by using a precision micro-molding machine. Molded parts with nano-structure surface were also produced to analyze the effect of molding conditions on replication of surface pattern and higher-order structure development of molded parts. Replication of molded parts was influenced by material properties, molding conditions and size of surface pattern. Higher-order structure of molded parts was investigated by using polarized microscope. Skin-shear-core regions inside the molded parts were observed and shear region affected to surface replication.

  • PDF

Alignment Algorithm for Nano-scale Three-dimensional Printing System (나노스케일 3 차원 프린팅 시스템을 위한 정렬 알고리즘)

  • Jang, Ki-Hwan;Lee, Hyun-Taek;Kim, Chung-Soo;Chu, Won-Shik;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1101-1106
    • /
    • 2014
  • Hybrid manufacturing technology has been advanced to overcome limitations due to traditional fabrication methods. To fabricate a micro/nano-scale structure, various manufacturing technologies such as lithography and etching were attempted. Since these manufacturing processes are limited by their materials, temperature and features, it is necessary to develop a new three-dimensional (3D) printing method. A novel nano-scale 3D printing system was developed consisting of the Nano-Particle Deposition System (NPDS) and the Focused Ion Beam (FIB) to overcome these limitations. By repeating deposition and machining processes, it was possible to fabricate micro/nano-scale 3D structures with various metals and ceramics. Since each process works in different chambers, a transfer process is required. In this research, nanoscale 3D printing system was briefly explained and an alignment algorithm for nano-scale 3D printing system was developed. Implementing the algorithm leads to an accepted error margin of 0.5% by compensating error in rotational, horizontal, and vertical axes.

Fabrication of Three-Dimensional Micro-Shell Structures Using Two-Photon Polymerization (이광자 흡수 광중합에 의한 3차원 마이크로 쉘 구조물 제작)

  • Park Sang Hu;Lim Tae Woo;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.998-1004
    • /
    • 2005
  • A nano-stereolithography (NSL) process has been developed for fabrication of 3D shell structures which can be applied to various nano/micro-fluidic devices. By the process, a complicated 3D shell structure on a scale of several microns can be fabricated using lamination of layers with a resolution of 150 nm in size, so it does not require the use of my sacrificial layer or any supporting structure. A layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) induced using a femtosecond laser processing. When the polymerization process is finished, unsolidified liquid state resins can be removed easily by dropping several droplets of ethanol fur developing the fabricated structure. Through this work, some 3D shell structures, which can be applied to various applications such as nano/micro-fluidic devices and MEMS system, were fabricated using the developed process.

The Effect of Micro Nano Multi-Scale Structures on the Surface Wettability (초소수성 표면 개질에 미치는 마이크로 나노 복합구조의 영향)

  • Lee, Sang-Min;Jung, Im-Deok;Ko, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.424-429
    • /
    • 2008
  • Surface wettability in terms of the size of the micro nano structures has been examined. To evaluate the influence of the nano structures on the contact angles, we fabricated two different kinds of structures: squarepillar-type microstructure with nano-protrusions and without nano-protrusions. Microstructure and nanostructure arrays were fabricated by deep reactive ion etching (DRIE) and reactive ion etching (RIE) processes, respectively. And plasma polymerized fluorocarbon (PPFC) was finally deposited onto the fabricated structures. Average value of the measured contact angles from microstructures with nanoprotrusions was $6.37^{\circ}$ higher than that from microstructures without nano-protrusions. This result indicates that the nano-protrusions give a crucial effect to increase the contact angle.