Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.2.151

Exploring precise deposition and influence mechanism for micro-scale serpentine structure fiber  

Wang, Han (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology)
Ou, Weicheng (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology)
Zhong, Huiyu (Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology)
He, Jingfan (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology)
Wang, Zuyong (College of Materials Science and Engineering, College of Biology, Hunan University)
Cai, Nian (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology)
Chen, XinDu (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology)
Xue, Zengxi (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology)
Liao, Jianxiang (Guangdong Foshan Nanofiberlabs Co., Ltd)
Zhan, Daohua (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology)
Yao, Jingsong (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology)
Wu, Peixuan (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology)
Publication Information
Advances in nano research / v.12, no.2, 2022 , pp. 151-165 More about this Journal
Abstract
Micro-scale serpentine structure fibers are widely used as flexible sensor in the manufacturing of micro-nano flexible electronic devices because of their outstanding non-linear mechanical properties and organizational flexibility. The use of melt electrowriting (MEW) technology, combined with the axial bending effect of the Taylor cone jet in the process, can achieve the micro-scale serpentine structure fibers. Due to the interference of the process parameters, it is still challenging to achieve the precise deposition of micro-scale and high-consistency serpentine structure fibers. In this paper, the micro-scale serpentine structure fiber is produced by MEW combined with axial bending effect. Based on the controlled deposition of MEW, applied voltage, collector speed, nozzle height and nozzle diameter are adjusted to achieve the precise deposition of micro-scale serpentine structure fibers with different morphologies in a single motion dimension. Finally, the influence mechanism of the above four parameters on the precise deposition of micro-scale serpentine fibers is explored.
Keywords
axial bending effect; melt electrowriting; precise deposition; serpentine structure;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Zhang, C.L., Luo, Y.X., Cheng, R.R. and Wang, X.Y. (2017), "Electromechanical fields in piezoelectric semiconductor nano-fibers under an axial force", MRS Adv., 2(56), 3421-3426. https://doi.org/10.1557/adv.2017.301.   DOI
2 Zhang, Y.Z., Wang, Y., Cheng, T., Yao, L. Q., Li, X., Lai, W.Y. and Huang, W. (2019), "Printed supercapacitors: Materials, printing and applications", Chem. Soc. Rev., 48(12), 3229-3264. https://doi.org/10.1039/C7CS00819H.   DOI
3 Zhu, Z., Chen, X., Huang, S., Du, Z., Liao, W., Fang, F., Peng, D. and Wang, H. (2015), "The process of wavy fiber deposition via auxiliary electrodes in near-field electrospinning", Appl. Phys. A, 120(4), 1435-1442. https://doi.org/10.1007/s00339-015-9330-x.   DOI
4 Huang, Y., Song, J., Yang, C., Long, Y. and Wu, H. (2019), "Scalable manufacturing and applications of nanofibers", Mater. Today, 28, 98-113. https://doi.org/10.1016/j.mattod.2019.04.018.   DOI
5 Kong, T., Li, J., Liu, Z., Zhou, Z., Ng, P.H.Y., Wang, L. and Shum, H. C. (2016), "Rapid mixing of viscous liquids by electrical coiling", Sci. Rep., 6(1), 1-8. https://doi.org/10.1038/srep19606.   DOI
6 Zheng, G., Jiang, J., Wang, X., Li, W., Yu, Z. and Lin, L. (2021), "High-aspect-ratio three-dimensional electrospinning via a tip guiding electrode", Mater. Des., 198, 109304. https://doi.org/10.1016/j.matdes.2020.109304.   DOI
7 Kou, L., Huang, T., Zheng, B., Han, Y., Zhao, X., Gopalsamy, K., Sun, H. and Gao, C. (2014), "Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics", Nat. Commun., 5(1), 1-10. https://doi.org/10.1038/ncomms4754.   DOI
8 Huang, Y., Ding, Y., Bian, J., Su, Y., Zhou, J., Duan, Y. and Yin, Z. (2017), "Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers", Nano Energy, 40, 432-439. https://doi.org/10.1016/j.nanoen.2017.07.048.   DOI
9 Baji, A. and Abtahi, M. (2013), "Fabrication of barium titanate-bismuth ferrite fibers using electrospinning", Adv. Nano Res., 1(4), 183-192. http://doi.org/10.12989/anr.2013.1.4.183.   DOI
10 Chinnappan, A., Baskar, C., Baskar, S., Ratheesh, G. and Ramakrishna, S. (2017), "An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics", J. Mater. Chem. C, 5(48), 12657-12673. https://doi.org/10.1039/C7TC03058D.   DOI
11 Yang, W.M., Zhu, T.K., Jin, Y.A. and Fu, J.Z. (2017), "Facile fabrication of helical microfluidic channel based on rope coiling effect", Microsyst. Technol., 23(7), 2957-2964. https://doi.org/10.1007/s00542-016-3010-4.   DOI
12 Nag, A., Mukhopadhyay, S.C. and Kosel, J. (2017), "Wearable flexible sensors: A review", IEEE Sens. J., 17(13), 3949-3960. https://doi.org/10.1109/JSEN.2017.2705700.   DOI
13 Passieux, R., Guthrie, L., Rad, S.H., Levesque, M., Therriault, D. and Gosselin, F.P. (2015), "Instability-assisted direct writing of microstructured fibers featuring sacrificial bonds", Adv. Mater., 27(24), 3676-3680. https://doi.org/10.1002/adma.201500603.   DOI
14 Luelf, T., Bremer, C. and Wessling, M. (2016), "Rope coiling spinning of curled and meandering hollow-fiber membranes", J. Membr. Sci., 506, 86-94. https://doi.org/10.1016/j.memsci.2016.01.037.   DOI
15 Matsumoto, H., Minami, H., Yamaura, I. and Yoshida, Y. (2019), "Postoperative subdural hematoma with blood flow from an epidural hematoma through a tear at the suture point of an artificial dura substitute", Acta Neurochir., 161(4), 755-760. https://doi.org/10.1007/s00701-019-03830-7.   DOI
16 Nayak, L., Mohanty, S., Nayak, S.K. and Ramadoss, A. (2019), "A review on inkjet printing of nanoparticle inks for flexible electronics", J. Mater. Chem. C, 7(29), 8771-8795. https://doi.org/10.1039/C9TC01630A.   DOI
17 Nezadi, M., Keshvari, H. and Yousefzadeh, M. (2021), "Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds", Adv. Nano Res., Int. J., 10(1), 59-69. http://doi.org/10.12989/anr.2021.10.1.059.   DOI
18 Duan, Y., Ding, Y., Xu, Z., Huang, Y. and Yin, Z. (2017), "Helix electrohydrodynamic printing of highly aligned serpentine micro/nanofibers", Polymers, 9(9), 434. https://doi.org/10.3390/polym9090434.   DOI
19 Gao, W., Ota, H., Kiriya, D., Takei, K. and Javey, A. (2019), "Flexible electronics toward wearable sensing", Acc. Chem. Res., 52(3), 523-533. https://doi.org/10.1021/acs.accounts.8b00500.   DOI
20 Huang, L., Wang, H., Zhan, D. and Fang, F. (2021), "Flexible capacitive pressure sensor based on laser-induced graphene and polydimethylsiloxane foam", IEEE Sens. J., 21(10), 12048-12056. https://doi.org/10.1109/JSEN.2021.3054985.   DOI
21 Choi, M.K., Yang, J., Kang, K., Kim, D.C., Choi, C., Park, C., Kim, S.J., Chae, S.I., Kim, T.H., Kim, J.H., Hyeon, T. and Kim, D.H. (2015), "Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing", Nat. Commun., 6(1), 1-8. https://doi.org/10.1038/ncomms8149.   DOI
22 Duan, H., Xie, E., Han, L. and Xu, Z. (2008), "Turning PMMA nanofibers into graphene nanoribbons by in situ electron beam irradiation", Adv. Mater., 20(17), 3284-3288. https://doi.org/10.1002/adma.200702149.   DOI
23 Huang, S., Liu, Y., Zhao, Y., Ren, Z. and Guo, C.F. (2019), "Flexible electronics: Stretchable electrodes and their future", Adv. Funct. Mater., 29(6), 1805924. https://doi.org/10.1002/adfm.201805924.   DOI
24 Huang, Y., Bai, X., Zhou, M., Liao, S., Yu, Z., Wang, Y. and Wu, H. (2016), "Large-scale spinning of silver nanofibers as flexible and reliable conductors", Nano Lett., 16(9), 5846-5851. https://doi.org/10.1021/acs.nanolett.6b02654.   DOI
25 Fang, F., Chen, X., Du, Z., Zhu, Z., Chen, X., Wang, H. and Wu, P. (2015), "Controllable direct-writing of serpentine micro/nano structures via low voltage electrospinning", Polymers, 7(8), 1577-1586. https://doi.org/10.3390/polym7081471.   DOI
26 Shariatpanahi, S.P., Bonn, D., Ejtehadi, M.R. and Zad, A.I. (2016), "Electrical bending instability in electrospinning visco-elastic solutions", J. Polym. Sci. Pol. Phys., 54(11), 1036-1042. https://doi.org/10.1002/polb.24029.   DOI
27 Persano, L., Camposeo, A. and Pisignano, D. (2015), "Active polymer nanofibers for photonics, electronics, energy generation and micromechanics", Prog. Polym. Sci., 43, 48-95. https://doi.org/10.1016/j.progpolymsci.2014.10.001.   DOI
28 Ramakrishna, S., Fujihara, K., Teo, W.E., Yong, T., Ma, Z. and Ramaseshan, R. (2006), "Electrospun nanofibers: Solving global issues", Mater. Today, 9(3), 40-50. https://doi.org/10.1016/S1369-7021(06)71389-X.   DOI
29 Romagnoli, P., Maeda, M., Ward, J.M., Truong, V.G. and Nic Chormaic, S. (2020), "Fabrication of optical nanofibre-based cavities using focussed ion-beam milling: A review", Appl. Phys. B Lasers O., 126, 1-16. https://doi.org/10.1007/s00340-020-07456-x.   DOI
30 Wang, X., Xu, L., Zheng, G., Jiang, J., Sun, D. and Li, W. (2021), "Formation of suspending beads-on-a-string structure in electro-hydrodynamic printing process", Mater. Des., 204, 109692. https://doi.org/10.1016/j.matdes.2021.109692.   DOI
31 Wu, C.C., Reinhoudt, D.N., Otto, C., Subramaniam, V. and Velders, A.H. (2011), "Strategies for patterning biomolecules with dip-pen nanolithography", Small, 7(8), 989-1002. https://doi.org/10.1002/smll.201001749.   DOI
32 Dhanawansha, K.B., Senadeera, R., Gunathilake, S.S. and Dassanayake, B.S. (2020), "Silver nanowire-containing wearable thermogenic smart textiles with washing stability", Adv. Nano Res., 9(2), 123-131. https://doi.org/10.12989/anr.2020.9.2.123.   DOI