Browse > Article
http://dx.doi.org/10.5695/JKISE.2012.45.4.151

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface  

Byun, Eun-Yeon (Plasma Coating Technology Department, Korea Institute of Materials Science)
Lee, Seung-Hun (Plasma Coating Technology Department, Korea Institute of Materials Science)
Kim, Jong-Kuk (Plasma Coating Technology Department, Korea Institute of Materials Science)
Kim, Yang-Do (Material Science and Engineering, Pusan National University)
Kim, Do-Geun (Plasma Coating Technology Department, Korea Institute of Materials Science)
Publication Information
Journal of the Korean institute of surface engineering / v.45, no.4, 2012 , pp. 151-154 More about this Journal
Abstract
A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.
Keywords
Hydrophobic; Aluminum; Micro.Nano scale structure; Contact angle; Surface energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. H. Jung, I. J. Park, S. B. Lee, H. S. Park, J. Kor. Inst. Chem., 5 (2002) 39.
2 B. Qian, Z. Shen, Langmuir, 21 (2005) 9007.   DOI   ScienceOn
3 R. N. Wenzel, Ind. Eng. Chem., 28 (1936) 988.   DOI
4 A. B. D. Cassie, S. Baxter, Trans. Faraday Soc., 40 (1944) 546.   DOI
5 A. Nakajima, K. Hashimoto, T. Watanabe, Monatshefte fur Chemie, 132 (2001) 31.   DOI
6 L. Jiang, Y. Zhao, J. Zhai, Angew. Chem. Int. Ed, 43 (2004) 4338.   DOI   ScienceOn
7 Y. Wu, H. Sugimura, Y. Inoue, O. Takai, Chem. Vap. Deposition, 8 (2002) 47.   DOI
8 J. Zhang, X. Cao, Adv. Funct. Mater., 17 (2007) 593.   DOI
9 R. A. Caruso, J. H. Schattkc, A. Greiner, Adv. Mater., 13 (2001) 1577.   DOI   ScienceOn
10 H. Wang, D. Dai, X. Wu, Appl. Surf. Sci., 254 (2008) 5599.   DOI
11 X. Song, J. Zhai, Y. Wang, L. Jiang, J. Phys. Chem. B, 109 (2005) 4048.   DOI   ScienceOn
12 Y. C. Hong, D. H. Shin, S. C. Cho, H. S. Uhm, Chem. Phys. Lett., 427 (2006) 390.   DOI
13 Y. H. Kim, J. Kor. Inst. Chem., 8(3) (2005) 82.
14 S. H. Bang, S. J. Lee, S. Y. Jeom, I. S. Shin, H. H. Park, H. T. Jeon, Semicond. Sci. Technol., 24 (2009) 025008.   DOI
15 P. S. Flavio, C. Elson, C. Marcelo, C. L. M. Francisco, Mater. Res., 6(3) (2003) 353.   DOI
16 N. D. Hegde, H. Hirashima, A. V. Rao, J. Porous. Mater., 14 (2007) 165.   DOI
17 T. Young, Phil. Trans. R. Soc. London, 95 (1805) 65.   DOI   ScienceOn