• Title/Summary/Keyword: Micro-porous layer

Search Result 63, Processing Time 0.024 seconds

Physical properties of PU coated fabric with collagen (콜라겐을 첨가한 폴리우레탄 코팅직물의 물성)

  • 백천의;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.6
    • /
    • pp.800-808
    • /
    • 1999
  • The demand for PU coated synthetic leather is increasing as a high fashion material. But it has some faults of water vapor permeability surface tacky property and static electricity. Therefore the purpose of this study was the produce of PU coated fabric added collagen with hydrophilic property and soft touch. In the PU coated fabric water vapor permeability water vaper absorption and frictional electronic voltage were investigated surface bending and compression properties were also examined by the use of KES-FB System. The followings were the results of this study. 1. There was no Cr in the collagen so that Cr was not treated in the collagen. 2. The surface and cross sectional layer of PU coated fabric with collagen were highly developed by micro porous structure. 3. The water vapor permeability of PU coated fabric was increased as collagen concentration increased. 4. The water vapor absorption of PU coated fabric was increased as collagen concentration increased. 5. The frictional electronic voltage of PU coated fabric was decreased in accordance with the increase of collagen concentration. Especially it effectively decreased by the use of only 5% collagen concentration. 6,. The bending and compression properties of PU coated fabric were increased in accordance with the increase of collagen concentration so that it became stiff. 7. The Value of MIU, SMD was decreased in accordance with the increase of collagen concentration so that the PU coated fabric became smooth.

  • PDF

Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating (플라즈마 제트에서의 분말 용융특성에 따른 Y2O3 코팅층의 미세조직 형성거동)

  • Kang, Sang-Woon;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.229-234
    • /
    • 2016
  • In this study, the degree of particle melting in $Y_2O_3$ plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed $Y_2O_3$ coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the $Y_2O_3$ coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

Effects of Double-diffusive Convection on the Mass Transport of Copper Ions in a Horizontal Porous Layer (수평 다공성유체층에서 이온의 물질전달에 대한 이중확산대류 효과)

  • Yoon Do-Young;Kim Min Chan;Choi Chang Kyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 1999
  • In the present study, buoyant force and its stabilizing effects in an electrostatic field were examined systematically in order to reduce the effect of natural convection with thermal stratification in a horizontal fluid-saturated porous layer. The correlation of ionic mass transport induced by double-diffusive convection in a horizontal porous layer has been derived theoretically. And the theoretical model was examined by electrochemical experiments. The theoretical correlation for mass transport which is satisfying Forchheimer's flow equation and based on the micro-turbulence model is derived as a function of soltual Darcy-Rayleigh number, thermal Darcy-Rayleigh number and Lewis number. In the experiment, the mass transport of copper ions in $CuSO_4-H_2SO_4$ solution is measured by electrochemical technique. By assembling theoretical correlation and experimental results, the mass transport correlation induced by double-diffusive convection is proposed as $$Sh=\frac{0.03054(Rs_D-LeRa_D)^{1/2}}{1-3.8788(Rs_D-LeRa_D)^{-1/10}}$$ The present correlation looks flirty reasonable with comparing experimental results, and very promising for the applications of its prototype into various systems involving heat transfer as well as mass transfer, in order to control the effects of natural convection effectively.

Thin Micro-Porous Scaffold Layer on Metallic Substrate (금속기질에 앓은 마이크로 다공질 스케폴드 코팅에 관한 연구)

  • Sin, D.C.;Miao, X.;Kim, W.C.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.41-47
    • /
    • 2010
  • 티타늄과 티타늄 합금은 재료적 특이성 때문에 심장 혈관 임플란트에서 일반적으로 사용되어 왔다. 일찍이 적용된 예로는 인공심장판막, 심박조율기의 보호케이스, 혈액 순환 장치 등이 있다. 하지만 물질유도혈전증(Material-induced thrombosis)은 혈전폐색에 의해 기인한 기능 손실로 심장혈관 임플란트 장치의 주된 합병증으로 존재하고 있으며, 심장혈관 임플란트의 혈전유전자는 심장혈관장치의 발달에 주된 난관 중 하나로 남아있다. 그리고 텍스처 혈액 접합 물질(Textured blood-contacting material)은 1960년대 초반 이후부터 혈액순환 보조 장치의 임상실험에 사용되고 있다. 접합 물질에 내장된 텍스처 섬유조직 표면은 형성, 성장, 안정적 부착, 생물학적 내벽(neointimal layer) 등 유도 혈액(entrapping blood) 성분에 의해 형성된다. 공동(cavity) 형상의 용해 가능한 미립자를 사용하는 SCPL법(Solvent casting/particulate leaching method)은 티타늄 기질 이전에 형성된 폴리우레탄 위에 텍스처(texture)를 생성하기 위해 사용되었다. 또한 콜라겐의 부동화(不動化)에 의한 공동(cavity)은 혈액 접합면에 잔존하기 위한 내피세포를 고정할 수 있는 효과가 있다. cpTi로 층화된 PU 기소공성(microporous)은 구조적 특성과 혈전증 감소를 위한 생물학적 내벽 사용의 잠재성을 평가하기 위한 세포 공동체 실험을 통해서 평가되었다.

Porous Electrode manufacture by catalyst powdering method for PAFC (촉매분말법에 의한 PAFC용 다공성 전극제작)

  • 김영우;이주성
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.194-199
    • /
    • 1993
  • Gas diffusion passes are introduced to catalyst layer so as to enlarge reaction region in cathode and anode and then improve electrode performances. The catalyst layer was manufactured with PTFE/carbon (none catalyst loaded) for gas diffusion and Pt/carbon (10 w/o Pt catalyst loaded) by varing the mixing ratio of (PTFE/carbon) to (Pt/carbon) by catalyst powdering method. The electrodes made by mixing Pt(10 w/o)/carbon powders and PTFE/carbon powders containing 60 w/o PTFE at the ratio of 7 : 3 showed the best electrode performances. It was known that by comparing the porosities to electrode performances the electrode performances were increased as both macro pore for gas diffusion and micro pore for electrolyte intrusion were formed much more. The platinum catalyst content in electrode was 0.2 mg/$\textrm{cm}^2$ and the PTFE content was 42 w/o. The electrode performance in unit cell was 220 ㎃/$\textrm{cm}^2$/0.7 V at operating temperature of 150$^{\circ}C$.

  • PDF

Preparation and Characterization of high-quality activated carbon by KOH activation of pitch precursors (KOH 활성화에 의한 피치계 고품질 활성탄의 제조 및 특성)

  • Lee, Eun-Ji;Kwon, Soon-Hyung;Choi, Poo-Reum;U, Jong-Pyo;Jung, Ji-Chul;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.408-415
    • /
    • 2014
  • In order to prepare high-quality activated carbons (ACs), coal tar pitch (CTP), and mixtures of CTP and petroleum pitch (PP) were activated with KOH. The ACs prepared by activation of CTP in the range of $700{\sim}1000^{\circ}C$ for 1~5 h had very porous textures with large specific surface areas of $2470{\sim}3081m^2/g$. The optimal activation conditions of CTP were determined as CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained AC showed the highest micro-pore volume, and pretty high specific surface area and meso-pore volume. The micro-pore volumes and specific areas of activated mixtures of CTP and PP were similar to each other but the meso-pore volume could be increased. In order to change the degree of crystallinity of precursors before KOH activation process, the CTPs were carbonized in the range of $500{\sim}900^{\circ}C$. As the carbonization temperature increased, the specific surface area and pore volume of the activated ACs with the same activation conditions for CTP decreased dramatically. It was demonstrated that the increased pore size distribution of AC electrodes in the range of 1 to 2 nm plays an important role in the performance of electric double-layer capacitor.

Determination of Optimum Binder Content in the Catalyst Layer with Different GDL for Anode of HT-PEMFC (고온 고분자 전해질막 연료전지 수소극 전극에서 서로 다른 가스 확산층에 따른 최적 바인더 함량 결정)

  • CHUN, HYUNSOO;KIM, DO-HYUNG;JUNG, HYEON-SEUNG;PAK, CHANHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.38-46
    • /
    • 2022
  • Two different gas diffusion layers having noticeable differences in micro-porous layer's (MPL's) crack were studied as a substrate for the gas diffusion electrode (GDE) with different binder/carbon (B/C) ratios in high-temperature polymer electrolyte fuel cell (Ht-PEMFC). As a result, the performance defined as the voltage at 0.2 A/cm2 and maximum power density from the single cells using GDEs from H23 C2 and SGL38 BC with different B/C ratios were compared. GDEs from H23 C2 showed a proportional increase of the voltage with the binder content on the other hand GDEs from SGL38 BC displayed a proportional decline of the voltage to the binder content. It was revealed that MPL crack influences the structure of catalyst layer in GDEs as well as affects the RCathode which is in close connection with the Ht-PEMFC performance.

Carbon-free Hydrogen Production Using Membrane Reactors (막촉매반응기를 이용한 수소생산)

  • Do, Si-Hyun;Roh, Ji Soo;Park, Ho Bum
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.297-306
    • /
    • 2018
  • This review focused carbon-free hydrogen productions from ammonia decomposition including inorganic membranes, catalysts and the presently studied reactor configurations. It also contains general information about hydrogen productions from hydrocarbons as hydrogen carriers. A Pd-based membrane (e.g. a porous ceramic or porous metallic support with a thin selective layer of Pd alloy) shows its efficiency to produce the high purity hydrogen. Ru-based catalysts consisted of Ru, support, and promoter are the efficient catalysts for ammonia decomposition. Packed bed membrane reactor (PBMR), Fluidized bed membrane reactor (FBMR), and membrane micro-reactor have been studied mainly for the optimization and the improvement of mass transfer limitation. Various types of reactors, which contain various combinations of hydrogen-selective membranes (i.e. Pd-based membranes) and catalysts (i.e. Ru-based catalysts) including catalytic membrane reactor, have been studied for carbon-free hydrogen production to achieve high ammonia conversion and high hydrogen flux and purity.

Frost Prevention of Fin-Tube Heat Exchanger by Spreading Antifreezing Solution (부동액 도포에 의한 핀-튜브 열교환기 착상방지)

  • Oh, Sang-Youp;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.477-485
    • /
    • 2006
  • A study on frost prevention of fin-tube heat exchanger is experimently performed by spreading antifreezing solution on heat exchanger surface. It is desirable that the antifreezing solution spreads completely on the surface forming thin liquid film to prevent frost nucleation and crystal growth and to reduce the thermal resistance across the liquid film. A small amount of antifreezing solution falls in drops on heat exchanger surface using two types of supplying devices, and a porous layer coating technique is adopted to enhance the wettedness of antifreezing solution on the surface. It is observed that the antifreezing solution liquid film prevents fin-tube heat exchanger from frosting, and heat transfer performance does not degrade through the frosting tests. The concentration of supplied antifreezing solution can be determined by heat transfer analysis of the first row of heat exchanger to avoid antifreezing solution freezing due to dilution by moisture absorption.