Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.5.229

Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating  

Kang, Sang-Woon (Department of Materials Science and Engineering, Chungnam National University)
Baik, Kyeong-Ho (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.26, no.5, 2016 , pp. 229-234 More about this Journal
Abstract
In this study, the degree of particle melting in $Y_2O_3$ plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed $Y_2O_3$ coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the $Y_2O_3$ coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.
Keywords
$Y_2O_3$; plasma spraying; powder melting; inter-splat pore; scratch resistance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. J. Van Roosmalen, J. A. G. Baggerman and S. J. H. Brader, Dry Etching for VLSI, p.99, Plenum Press, New York (1991).
2 R. Doering and Y. Nishi, Handbook of Semiconductor Manufacturing Technology, p.21, CRC Press, New York (2008).
3 D. M. Kim, K. B. Kim, S. Y. Yoon, Y. S. Oh, H. T. Kim and S. M. Lee, J. Ceram. Soc. Jpn., 117, 863 (2009).   DOI
4 M. Kazuhiro, T. Norihatu and S. Koichi, J. Vac. Sci. Technol. A, 27, 831 (2009).
5 R. Ramos, G. Cunge, B. Pelissier and O. Joubert, Plasma Sources Sci. Technol., 16, 711 (2007).   DOI
6 D. M. Kim, S. Y. Yoon, K. B. Kim, H. S. Kim, Y. S. Oh and S. M. Lee, J. Korean Ceram. Soc. (in Korean), 45, 707 (2008).   DOI
7 D. M. Kim, Y. S. Oh, S. W. Kim, H. T. Kim, D. S. Lim and S. M. Lee, Thin Solid Films, 519, 6698 (2011).   DOI
8 S. Beauvais, V. Guipont, F. Borit, M. Jeandin, M. Espanol, K. A. Khor, A. Robisson and R. Saenger, Surf. Coat. Technol., 183, 204 (2004).   DOI
9 M. Tului, G. Marino and T. Valente, Surf. Coat. Technol., 201, 2103 (2006).   DOI
10 H. K. Seok, E. Y. Choi, P. R. Cha, M. C. Son and B. Choi, Surf. Coat. Technol., 205, 3341 (2011).   DOI
11 J. Kitamura, H. Ibe, F. Yuasa and H. Mizuno, J. Therm. Spray Soc., 17, 878 (2008).   DOI
12 I. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara and K. Uematsu, J. Am. Ceram. Soc., 90, 2327 (2007).   DOI
13 K. Y. Choi, Y. S. Oh, S. Kim and S. M. Lee, Ceram. Int., 39, 1209 (2013).   DOI
14 D. H. Riu, S. W. Lee, Y. K. Jeong and S. C. Choi, Key Eng. Mater., 264-8, 601 (2004).
15 T. Gougousi and Z. Chen, Thin Solid Films. 516, 6197 (2008).   DOI
16 T. Watanabe, M. Kondo, T. Nagasaka, and A. Sagara, J. Plasma Fusion Res., 9, 342 (2010).
17 P. Fauchais, J. Phys. D: Applied Physics, 37, R86 (2004).   DOI
18 M. Berkowski, P. Bowen, T. Liechti and H. J. Scheel, J. Am. Ceram. Soc., 75, 1005 (1992).   DOI
19 L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, p.28-50, John Wiley & Sons, New York (1995).
20 K. H. Baik, P. S. Grant and B. Cantor, Acta Mater., 52, 199 (2004).   DOI
21 C. Li, C. Li and M. Wang, Surf. Coat. Technol., 198, 278 (2005).   DOI
22 H. Y. Lee and K. H. Baik, Met. Mater. Int., 15, 783 (2009).   DOI
23 W. S. So and K. H. Baik, Korean J. Mater. Res. (in Korean), 21, 106 (2011).   DOI