DOI QR코드

DOI QR Code

Determination of Optimum Binder Content in the Catalyst Layer with Different GDL for Anode of HT-PEMFC

고온 고분자 전해질막 연료전지 수소극 전극에서 서로 다른 가스 확산층에 따른 최적 바인더 함량 결정

  • CHUN, HYUNSOO (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • KIM, DO-HYUNG (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • JUNG, HYEON-SEUNG (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • PAK, CHANHO (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology)
  • 전현수 (광주과학기술원 에너지융합대학원) ;
  • 김도형 (광주과학기술원 에너지융합대학원) ;
  • 정현승 (광주과학기술원 에너지융합대학원) ;
  • 박찬호 (광주과학기술원 에너지융합대학원)
  • Received : 2021.11.22
  • Accepted : 2022.02.08
  • Published : 2022.02.28

Abstract

Two different gas diffusion layers having noticeable differences in micro-porous layer's (MPL's) crack were studied as a substrate for the gas diffusion electrode (GDE) with different binder/carbon (B/C) ratios in high-temperature polymer electrolyte fuel cell (Ht-PEMFC). As a result, the performance defined as the voltage at 0.2 A/cm2 and maximum power density from the single cells using GDEs from H23 C2 and SGL38 BC with different B/C ratios were compared. GDEs from H23 C2 showed a proportional increase of the voltage with the binder content on the other hand GDEs from SGL38 BC displayed a proportional decline of the voltage to the binder content. It was revealed that MPL crack influences the structure of catalyst layer in GDEs as well as affects the RCathode which is in close connection with the Ht-PEMFC performance.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20204010600340).

References

  1. M. Naseem, C.-M. KIM, and S. Lee, "A study on the efficiency enhancement of the HT-PEMFC having fuel processing system by connecting adsorption chilling system", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 5, 2019, pp. 411-417, doi: https://doi.org/10.7316/KHNES.2019.30.5.411.
  2. J.-D. Kim, Y.-I. Park, K. Kobayashi, and M. Nagai, "Effect of CO gas and anode-metal loading on H2 oxidation in proton exchange membrane fuel cell", J. Power Sources, Vol. 103, No. 1, 2001, pp. 127-133, doi: https://doi.org/10.1016/S0378-7753(01)00838-2.
  3. G. Karimi and X. Li, "Analysis and modeling of PEM fuel cells stack performance: effect of in situ reverse water gas shift reaction and oxygen bleeding", J. Power Sources, Vol. 159, No. 2, 2006, pp. 943-950, doi: https://doi.org/10.1016/j.jpowsour.2005.11.104.
  4. S. Shimpalee, U. Beuscher, and J. W. Van Zee, "Analysis of GDL flooding effects on PEMFC performane", Electrochim. Acta, Vol. 52, No. 24, 2007, pp. 6748-6754, doi: https://doi.org/10.1016/j.electacta.2007.04.115.
  5. J. A. Asensio, E. M. Sanchez, and P. Gomez-Romero, "Proton conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest", Chem. Soc. Rev., Vol. 39, No. 8, 2010, pp. 3210-3239, doi: https://doi.org/10.1039/B922650H.
  6. P. Krishnan, J.-S. Park, and C.-S. Kim, "Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide", J. Power Sources, Vol. 159, No. 2, 2006, pp. 817-823, doi: https://doi.org/10.1016/j.jpowsour.2005.11.071.
  7. C.-P. Wang, H.-S. Chu, Y.-Y. Yan, and K.-L. Hsueh, "Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells", J. Power Sources, Vol. 170, No. 2, 2007, pp. 235-241, doi: https://doi.org/10.1016/j.jpowsour.2007.03.070.
  8. D. ergun, Y. Devrim, N. Bac, and I. Eroglu, "Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell", J. Appl. Polym. Sci., Vol. 124, No. S1, 2012, pp. E267-E277, doi: https://doi.org/10.1002/app.36507.
  9. S. Galbiati, P.-E. Coulon, G. Rizaa, M.-C. Clochard, M. Castellino, M. Sangermano, C. Nayoze, and A. Morin, "Poly(vinylimidazole) radiografted PVDF nanospheres as alternative binder for high temperature PEMFC electrodes", J. Power Sources, Vol. 296, 2015, pp. 117-121, doi: https://doi.org/10.1016/j.jpowsour.2015.06.105.
  10. D. H. Kim, H. S. Jung, H. Chun, and C. Pak, "Enhanced membrane electrode assembly performance by adding PTFE/Carbon black for high temperature polymer electrolyte membrane fuel cell", Int. J. Hydrogen Energy, Vol. 46, No. 57, 2021 pp. 29424-29431, doi: https://doi.org/10.1016/j.ijhydene.2021.02.120.
  11. H. S. Jung, D.-H. KIM, and C. Pak, "Characterization of PTFE electrode made by bar-Coating method using alcohol-based catalyst slurry", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 3, 2020, pp. 276-283, doi: https://doi.org/10.7316/KHNES.2020.31.3.276.
  12. G. Jeong, M. Kim, J. Han, H.-J. Kim, Y.-G. Shul, and E. Cho, "High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells", J. Power Sources, Vol. 323, 2016, pp. 142-146, doi: https://doi.org/10.1016/j.jpowsour.2016.05.042.
  13. F. Mack, T. Morawietz, R. Hiesgen, D. Kramer, V. Gogel, and R. Zeis, "Influence of the polytetrafluoroethylene content on the performance of high-temperature polymer electrolyte membrane fuel cell electrodes", Int. J. Hydrogen Energy, Vol. 41, No. 18, 2016, pp. 7475-7483, doi: https://doi.org/10.1016/j.ijhydene.2016.02.156.
  14. J.-H. Kim, H.-J. Kim, T.-H. Lim, and H.-I. Lee, "Dependence of the performance of a high-temperature polymer electrolytefuel cell on phosphoric acid-doped polybenzimidazole ionomercontent in cathode catalyst layer", Vol. 170, No. 2, 2007, pp. 275-280, doi: https://doi.org/10.1016/j.jpowsour.2007.03.082.
  15. F. Seland, T. Berning, B. Borresen, and R. Tunold, "Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte", J. Power Sources, Vol. 160, No. 1, 2006, pp. 27-36, doi: https://doi.org/10.1016/j.jpowsour.2006.01.047.
  16. R. Zeis, "Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells", Beilstein J Nanotechnol, Vol. 6, 2015, pp. 68-83, doi: https://doi.org/10.3762/bjnano.6.8.
  17. P. Mazur, J. Soukup, M. Paidar, and K. Bouzek, "Gas diffusion electrodes for high temperature PEM-type fuel cells: role of a polymer binder and method of the catalyst layer deposition", J. Appl. Electrochem., Vol. 41, 2011, pp. 1013-1019, doi: https://doi.org/10.1007/s10800-011-0325-9.
  18. H. Su, S. Pasupathi, B. J. Bladergroen, V. Linkov, and B. G. Pollet, "Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique", J. Power Sources, Vol. 242, 2013, pp. 510-519, doi: https://doi.org/10.1016/j.jpowsour.2013.05.128.
  19. H. Su, Q. Xu, J. Chong, H. Li, C. Sita, and S. Pasupathi, "Eliminating micro-porous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell", J. Power Sources, Vol. 341, 2017, pp. 302-308, doi: https://doi.org/10.1016/j.jpowsour.2016.12.029.
  20. S. H. Eberhardt, M. Toulec, F. Marone, M. Stampanoni, F. N. Buchi, and T. J. Schmidt, "Dynamic operation of HT-PEFC: in-operando imaging of phosphoric acid profiles and (Re)distribution", J. Electrochem. Soc., Vol. 162, No, 3, 2015, pp. F310-F316, doi: https://doi.org/10.1149/2.0751503jes.
  21. J. Halter, F. Marone, T. J. Schmidt, and F. N. Buchi, "Breaking through the cracks: on the mechanism of phosphoric acid migration in high temperature polymer electrolyte fuel cells", J. Electrochem. Soc., Vol. 165, No. 14, 2018, pp. F1176-F1183, doi: https://doi.org/10.1149/2.0501814jes.
  22. H. Su, C. Sita, and S. Pasupathi, "The effect of gas diffusion layer PTFE content on the performance of high temperature proton exchange membrane fuel cell", Int. J. Electrochem. Sci., Vol. 11, 2016, pp. 2919-2926, doi: https://doi.org/10.20964/110402919.
  23. S. Thomas, S. S. Araya, J. R. Vang, and S. K. Kaer, "Investigating different break-in procedures for reformed methanol high temperature proton exchange membrane fuel cells", Int. J. Hydrogen Energy., Vol. 43, No. 31, 2018, pp. 14691-14700, doi: https://doi.org/10.1016/j.ijhydene.2018.05.166.
  24. N. Bevilacqua, M. G. George, S. Galbiati, A. Bazylak, and R. Zeis, "Phosphoric acid invasion in high temperature PEM fuel cell gas diffusion layers", Electrochim. Acta, Vol. 257, 2017, pp. 89-98, doi: https://doi.org/10.1016/j.electacta.2017.10.054.