Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.297

Carbon-free Hydrogen Production Using Membrane Reactors  

Do, Si-Hyun (Department of Energy Engineering, Hanyang University)
Roh, Ji Soo (Department of Energy Engineering, Hanyang University)
Park, Ho Bum (Department of Energy Engineering, Hanyang University)
Publication Information
Membrane Journal / v.28, no.5, 2018 , pp. 297-306 More about this Journal
Abstract
This review focused carbon-free hydrogen productions from ammonia decomposition including inorganic membranes, catalysts and the presently studied reactor configurations. It also contains general information about hydrogen productions from hydrocarbons as hydrogen carriers. A Pd-based membrane (e.g. a porous ceramic or porous metallic support with a thin selective layer of Pd alloy) shows its efficiency to produce the high purity hydrogen. Ru-based catalysts consisted of Ru, support, and promoter are the efficient catalysts for ammonia decomposition. Packed bed membrane reactor (PBMR), Fluidized bed membrane reactor (FBMR), and membrane micro-reactor have been studied mainly for the optimization and the improvement of mass transfer limitation. Various types of reactors, which contain various combinations of hydrogen-selective membranes (i.e. Pd-based membranes) and catalysts (i.e. Ru-based catalysts) including catalytic membrane reactor, have been studied for carbon-free hydrogen production to achieve high ammonia conversion and high hydrogen flux and purity.
Keywords
Pd-based membranes; supported Ru catalysts; catalytic membrane reactor; carbon-free hydrogen production; ammonia decompositions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Adhikari and S. Fernando, "Hydrogen membrane separation techniques", Ind. Eng. Chem. Res., 45, 875 (2006).   DOI
2 J. D. Holladay, J. Hu, D. L. King, and Y. Wang, "An overview of hydrogen production technologies", Catal. Today, 139, 244 (2009).   DOI
3 H. Yin and A. C. K. Yip, "A review on the production and purification of biomass-derived hydrogen using emerging membrane technologies", Catalysts, 7, 297 (2017).   DOI
4 F. Gallucci, E. Fernandez, P. Corengia, and M. V. S. Annaland, "Recent advances on membranes and membrane reactors for hydrogen production", Chem. Eng. Sci., 92, 40 (2013).   DOI
5 M. R. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian, and S. Mohebi, "Palladium membranes applications in reaction systems for hydrogen separation and purification: A review", Chem. Eng. Process. Process Intensif., 121, 24 (2017).   DOI
6 G. Barbieri, A. Brunetti, G. Gricoli, and E. Drioli, "An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen", J. Power Source, 182, 160 (2008).   DOI
7 F. Gallucci, L. Paturzo, and A. Basile, "A simulation study of the steam reforming of methane in a dense tubular membrane reactor", Int. J. Hydrog. Energy, 29, 611 (2004).   DOI
8 A. A. Plazaola, D. A. P. Tanaka, M. V. S. Annaland, and F. Gallucci, "Recent advances in Pd-Based membranes for membrane reactors", Molecules, 22, 51 (2017).   DOI
9 S. L. Jorgensen, P. E. H. Nielsen, and P. Lehrmann, "Steam reforming of methane in a membrane reactor", Catal. Today, 25, 303 (1995).   DOI
10 O. M Lovvik, T. A. Peters, and R. Bredesen, "First-principles calculations on sulfur interacting with ternary Pd-Ag-transition metal alloy membrane alloys", J. Membr. Sci., 453, 525 (2014).   DOI
11 A. Iulianelli, P. Ribeirinha, A. Mendes, and A. Basile, "A methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review", Renew. Sustain. Energy Rev., 29, 355 (2014).   DOI
12 N. Bion and D. Duprez, "Bioethanol reforming for $H_2$ production. A comparison with hydrocarbon reforming", Phys. Rep., 302, 1 (2015).
13 F. Schuth, R. Palkovits, R. Schlogl, and D. S. Su, "Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition", Energy Environ. Sci., 5, 6278 (2012).   DOI
14 S. Chiuta, R. C. Everson, H. W. J. P. Neomagus, P. V. D. Gryp, and D. G. Bessarabov, "Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review", Int. J. Hydrogen Energ., 38, 14968 (2013).   DOI
15 K. Nagaoka, T. Eboshi, Y. Takeishi, R. Tasaki, K. Honda, K. Imanura, and K. Sato, "Carbon-free $H_2$ production form ammonia triggered at room temperature with an acidic $RuO_2/{\gamma}-Al_2O_3$ catalyst", Sci. Adv., 3, e1602747 (2017).   DOI
16 L. Zhao, A. Goldbach, and H. Xu, "Tailoring palladium alloy membranes for hydrogen separation from sulfur contaminated gas streams", J. Membr. Sci., 507, 55 (2016).   DOI
17 T. Hejze, J. O. Besenhard, K. Kordesch, M. Cifrain, and R. R. Aronsson, "Current status of combined systems using alkaline fuel cells and ammonia as a hydrogen carrier", J. Power Sources, 176, 490 (2008).   DOI
18 D. A. P. Tanaka, M. A. T. Llosa, T. Nagase, J. Okazaki, Y. Wakui, F. Mizukami, and T. M. Suzuki, "Fabrication of hydrogen-permeable composite membranes packed with palladium nanoparticles", Adv. Mater., 18, 630 (2006).   DOI
19 N. A. Khan, A. Uhl, S. Shaikjutdinov, and H.-J. Freund, "Alumina supported model Pd-Ag catalysts: A combined STM, XPS, TPD and IRAS study", Surf. Sci., 600, 1849 (2006).   DOI
20 Y. Liab, F. Lianga, H. Buxa, We. Yangb, and J. Caro, "Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation", J. Mem. Sci., 354, 1-2, 48 (2010).   DOI
21 A. Huang and J. Caro, "Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity", Angew. Chem. Int. Ed, 50, 4979 (2011).   DOI
22 Y. Yoshinoa, T. Suzukia, B. N. Naira, H. Taguchia, and N. Itoh, "Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature", J. Membr. Sci., 267, 1-2, 8 (2005).   DOI
23 M. Kanezashi and M. Asaeda, "Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature", J. Membr. Sci., 271, 1-2, 86 (2006).   DOI
24 S. Yolcular, "Hydrogen recovery from methylcyclohexane as a chemical hydrogen carrier using a palladium membrane reactor", Energy Sources, Part A: recovery, Util. Environ. Eff. 38, 2148 (2016).   DOI
25 J. Tong, L. Su, Y. Kashima, R. Shirai, H. Suda, and Y. Matsumura, "Simultaneously depositing Pd-Ag thin membrane on asymmetric porous stainless steel tube and application to produce hydrogen from steam reforming of methane", Ind. Eng. Chem. Res., 45, 648 (2006).   DOI
26 S. F. Yin, B. Q. Xu, X. P. Zhou, and C. T. Au, "A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications", Appl. Catal. A, 277, 1 (2004).   DOI
27 F. Roa and J. D. Way, "Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium-copper membranes", Ind. Eng. Chem. Res., 42, 5827 (2003).   DOI
28 C. Su, T. Jin, K. Kuraoka, Y. Matsumura, and T. Yazawa, "Thin palladium film supportedon $SiO_2$-modified porous stainless steel for a high-hydrogen-flux membrane", Ind. Eng. Chem. Res., 44, 3053 (2005).   DOI
29 S. Liguori, A. Iulianelli, F. Dalena, P. Pinacci, F. Drago, M. Broglia, Y. Huang, and A. Basile, "Performance and long-term stability of Pd/PSS and $Pd/Al_2O_3$ mem-branes for hydrogen separation", Membranes, 4, 143 (2014).   DOI
30 O. Altinisik, M. Dogan, and G. Dogu, "Preparation and characterization of palladium-plated porous glass for hydrogen enrichment", Catal. Today, 105, 641 (2005).   DOI
31 H. S. Zeng, K. Inazu, and K. Aika, "Dechlorination process of active carbon-supported, barium nitrate-promoted ruthenium trichloride catalyst for ammonia synthesis", Appl. Catal. A: Gen., 219, 235 (2001).   DOI
32 T. V. Choudhary, C. Svadinaragana, and D. W. Goodman, "Catalytic ammonia decomposition: $CO_x$-free hydrogen production for fuel cell applications", Catal. Lett., 72, 197 (2001).   DOI
33 W. Arabczyk and J. Zamlynny, "Study of the ammonia decomposition over iron catalysts", Catal. Lett., 60, 167 (1999).   DOI
34 F. Gallucci, M. D. Falco, S. Tosti, L. Marrelli, and A. Basile, "Co-current and counter-current configurations for ethanol steam reforming in a dense Pd-Ag membrane reactor", Int. J. Hydrogen Energ., 33, 6165 (2008).   DOI
35 F. R. Garcia-Garcia, Y. H. Ma, I. Rodriguez-Ramos, and A. Guerrero-Ruiz, "High purity hydrogen production by low temperature catalytic ammonia decomposition in a multifunctional membrane reactor", Catal. Commun., 9, 482 (2008).   DOI
36 F. Gallucci, M. V. Sintannaland, and J. A. M. Kuipers, "Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming", Int. J. Hydrogen Energ., 35, 7142 (2010).   DOI
37 A. L. Mejdell, M. Jondahl, T. A. Peters, R. Bredesen, and H. J. Venvik, "Experimental investigation of a microchannel membrane configuration with a 1.4 ${\mu}m$ Pd/Ag 23 wt% membrane-Effects of flow and pressure", J. Membr. Sci., 327, 6 (2009).   DOI
38 J. Zhang, H. Xu, and W. Li, "High-purity $CO_x$-free $H_2$ generation from $NH_3$ via the ultra permeable and highly selective Pd membranes", J. Membr. Sci., 277, 85 (2006).   DOI
39 G. Li, M. Kanezashi, and T. Tsuru, "Highly enhanced ammonia decomposition in a bimodal catalytic membrane reactor for $CO_x$-free hydrogen production", Catal. Commun., 15, 60 (2011).   DOI
40 E. Rizzuto, P. Palange, and Z. D. Prete, "Characterization of an ammonia decomposition process by means of a multifunctional catalytic membrane reactor", Int. J. Hydrogen Energ., 39, 11403 (2014).   DOI
41 M. E. E. Abashar, "Ultra-clean hydrogen production by ammonia decomposition", J. King Saud Univ. - Eng. Sci., 30, 2 (2018).
42 R. E. Buxbaum, "Hydrogen generator", Patent US 6,461,408 (2002).