• 제목/요약/키워드: Micro-packaging

검색결과 265건 처리시간 0.031초

멀티블레이드를 이용한 Micro BGA의 초정밀 싱귤레이션 (Ultra-precision Singulation of Micro BGA using Multi Blade)

  • 김성철;이은상;이해동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.861-864
    • /
    • 1997
  • Singulation is a process that cutting for separating a chip individually after finishing packaging process(micro BGA etc.). For shortening the process of singulation, we proposed the singulation using multi-blade. This paper introduced a method of multi-blade singulation and investigated a result of application and problems. The efficiency of singulation process was improved five times better than the single-blade by the singulation using Multi-blade.

  • PDF

반도체 3차원 칩 적층을 위한 미세 범프 조이닝 기술 (Micro-bump Joining Technology for 3 Dimensional Chip Stacking)

  • 고영기;고용호;이창우
    • 한국정밀공학회지
    • /
    • 제31권10호
    • /
    • pp.865-871
    • /
    • 2014
  • Paradigm shift to 3-D chip stacking in electronic packaging has induced a lot of integration challenges due to the reduction in wafer thickness and pitch size. This study presents a hybrid bonding technology by self-alignment effect in order to improve the flip chip bonding accuracy with ultra-thin wafer. Optimization of Cu pillar bump formation and evaluation of various factors on self-alignment effect was performed. As a result, highly-improved bonding accuracy of thin wafer with a $50{\mu}m$ of thickness was achieved without solder bridging or bump misalignment by applying reflow process after thermo-compression bonding process. Reflow process caused the inherently-misaligned micro-bump to be aligned due to the interface tension between Si die and solder bump. Control of solder bump volume with respect to the chip dimension was the critical factor for self-alignment effect. This study indicated that bump design for 3D packaging could be tuned for the improvement of micro-bonding quality.

마이크로 사이즈의 무효소 혈당센서 응용을 위한 생체적합한 패키징 기술에 관한 연구 (Study on Bio-compatible Packaging Technology for Non-enzymatic Glucose Micro-sensor Applications)

  • 박대준;이이재;박재영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.280-281
    • /
    • 2007
  • 본 논문에서는 생체 내에 삽입하거나 연속적으로 혈당을 모니터링하기 위하여 제작된 무효소 혈당세서의 바이오 패키징 및 특성 최적화에 관하여 고찰하였다. 3전극을 갖는 동일한 센서구조에서 sensitivity를 최대화하기 위해 평면형 백금전극을 사용한 센서, 메조포러스 구조가 작동전극에 형성된 센서, 메조포러스 구조가 작동전극과 보조전극에 형성된 무효소 혈당센서를 설계, 제작하고 비교하였다. 각각의 센서는 0.009${\mu}A$ $mM^{-1}cm^{-2}$, 5.46${\mu}A$ $mM^{-1}cm^{-2}$, 7.75${\mu}A$ $mM^{-1}cm^{-2}$의 sensitivity를 가졌다. 또한 생체 이식되었을 때 혈액 속에서 글루코스응답을 얻는 데에 있어 방해종인 Ascrobic Acid와 Acetaminophen의 반응을 최소화하고, 혈액 내의 단백질들이 전극에 엉겨 붙는 것을 막기 위해 생체 적합한 물질인 Nafion 을 패키징 멤브레인으로 적용하여 센서를 제작하였다. 이 센서는 0.36${\mu}A$ $mM^{-1}cm^{-2}$의 sensitivity를 가졌다.

  • PDF

부분 가열을 이용한 저온 Hermetic 패키징 (Low Temperature Hermetic Packaging using Localized Beating)

  • 심영대;김영일;신규호;좌성훈;문창렬;김용준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1033-1036
    • /
    • 2002
  • Wafer bonding methods such as fusion and anodic bonding suffer from high temperature treatment, long processing time, and possible damage to the micro-scale sensor or actuators. In the localized bonding process, beating was conducted locally while the whole wafer is maintained at a relatively low temperature. But previous research of localized heating has some problems, such as non-uniform soldering due to non-uniform heating and micro crack formation on the glass capsule by thermal stress effect. To address this non-uniformity problem, a new heater configuration is being proposed. By keeping several points on the heater strip at calculated and constant potential, more uniform heating, hence more reliable wafer bonding could be achieved. The proposed scheme has been successfully demonstrated, and the result shows that it will be very useful in hermetic packaging. Less than 0.2 ㎫ contact Pressure were used for bonding with 150 ㎃ current input for 50${\mu}{\textrm}{m}$ width, 2${\mu}{\textrm}{m}$ height and 8mm $\times$ 8mm, 5mm$\times$5mm, 3mm $\times$ 3mm sized phosphorus-doped poly-silicon micro heater. The temperature can be raised at the bonding region to 80$0^{\circ}C$, and it was enough to achieve a strong and reliable bonding in 3minutes. The IR camera test results show improved uniformity in heat distribution compared with conventional micro heaters. For gross leak check, IPA (Isopropanol Alcohol) was used. Since IPA has better wetability than water, it can easily penetrate small openings, and is more suitable for gross leak check. The pass ratio of bonded dies was 70%, for conventional localized heating, and 85% for newly developed FP scheme. The bonding strength was more than 30㎫ for FP scheme packaging, which shows that FP scheme can be a good candidate for micro scale hermetic packaging.

  • PDF

레이저 마이크로 솔더링과 솔더링 인자 (Laser Micro Soldering and Soldering Factors)

  • 황승준;황성빈;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제27권3호
    • /
    • pp.1-8
    • /
    • 2020
  • In this paper, the principles, characteristics and recent studies of the laser micro soldering are reviewed. The factors which influence laser micro welding and soldering are also included. Laser soldering is a non-contact process that transfers energy to solder joint by a precisely controlled laser beam. In recent electronics industry, the demands for laser soldering are increasing due to bonding for complex circuits and local heating in micro-joint. In laser soldering, there are several important factors like laser absorption, laser power, laser scanning speed, and etc, which affect laser solderability. The laser absorption ratio depends on materials, and each material has different absorption or reflectivity for the laser beam, which requires fine adjustment of the laser beam. Laser types and operating conditions are also important factors for laser soldering performance, and these are also reviewed.

Recent Technology Trends in BGA and Flip Chip

  • Lee, Young-Min
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 1999년도 춘계 기술심포지움 전자부품 및 패키징 기술의 최신동향
    • /
    • pp.54-69
    • /
    • 1999
  • PDF