• Title/Summary/Keyword: Micro-Sized Si

Search Result 38, Processing Time 0.029 seconds

Cytotoxic Effects of Nanoparticles Assessed In Vitro and In Vivo

  • Cha, Kyung-Eun;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1573-1578
    • /
    • 2007
  • An increasing number of applications is being developed for the use of nanoparticles in various fields. We investigated possible toxicities of nanoparticles in cell culture and in mice. Nanoparticles tested were Zn (300 nm), Fe (100 nm), and Si (10-20, 40-50, and 90-110 nm). The cell lines used were brain, liver, stomach, and lung from humans. In the presence of nanopaticles, mitochodrial activity decreased zero to 15%. DNA contents decreased zero to 20%, and glutathione production increased zero to 15%. None of them showed a dose dependency. Plasma membrane permeability was not altered by nanoparticles. In the case of Si, different sizes of the nanoparticles did not affect cytotoxicity. The cytotoxicity was also shown to be similar in the presence of micro-sized ($45\;{\mu}m$) Si particles. Organs from mice fed with nanoparticles showed nonspecific hemorrhage, lymphocytic infiltration, and medullary congestion. A treatment with the micro-sized particle showed similar results, suggesting that the acute in vivo toxicity was not altered by nano-sized particles.

Effect of Si on Mechanical and Anti-oxidation Properties of Ti-Si-N Coating (Si가 Ti-Si-N 코팅막의 기계적 성밀 및 내산화특성에 미치는 영향)

  • 박범희;김정애;이종영;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.96-101
    • /
    • 2000
  • Comparative studies on microstructure, and mechanical and anti-oxidation properties between TiN and Ti-Si-N films were performed. The Ti-Si-N films were deposited on high-speed steel and silicon wafer substrates by plasma-assisted chemcial vapor deposition(PACVD) technique. The Si addition to TiN film caused to change the microstructure such as grain size refinement, randomly multi-oriented microstructure, and nano-sized codeposition of silicon nitride in the TiN matrix. The Ti-Si-N film, contains Si content of ∼7 at.%, showed the micro-hardness value of ∼3400 HK, which was higher than the pure TiN film whose hardness was ∼1500HK. The Ti-Si(7 at.%)-N film also showed much improved anti-oxidation properties compared with those of the pure TiN film. These properties were also related to the microstructure of Ti-Si(7 at.%)-N film was formed and retarded further oxidation of the nitridelayer. These properties were also related to the microstructure of Ti-Si(7 at.%)-N film which was characterized by nano-sized precipitates of silicon nitride phase in the TiN matrix and randomly oriented grains.

  • PDF

Characteristic X-ray Spectrum Analysis of Micro-Sized SiC

  • Miyoshi, Noriko;Mao, Weiji;Era, Hidenori;Shimozaki, Toshitada;Shinozaki, Nobuya
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.27-31
    • /
    • 2016
  • It has been investigated what kind of characteristic X-ray in electron probe micro-analyzer (EPMA) is effective for the determination of compounds of Si series materials. After comparing the characteristic X-rays among the primary and secondary lines in $K_{\alpha}$ and $K_{\beta}$ obtained from the Si series standard samples, it was found that the secondary line of $K_{\alpha}$ exhibited the most informative spectrum although the intensity was considerably weak. As a result of analyzing the spectrum shapes of the Si series standard samples, the spectrum shape of the secondary line of $K_{\alpha}$ for SiC was different from those for other Si compounds. To grasp the characteristics of the shape, a line was perpendicularly drawn from the peak top to base line in order to divide a spectrum into two areas. The area ratio of right to left was defined to call as the asymmetry index here. As a result, the asymmetry index value of the SiC was greater than one, while those of other Si compounds were less than one. It was found from the EPMA analysis that identification of SiC became successful to distinguish from other Si compounds and this method was applicable for micro-sized compounds in a practical composite material.

Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

  • Ishiyama, Chiemi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.122-130
    • /
    • 2012
  • Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and $75\;{\mu}m$) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter.

Electrochemical Performance of Micro Sized Silicon/CNT/Carbon Composite as Anode Material for Lithium Ion Batteries (리튬이차전지용 음극활물질로서 Micro sized Silicon/CNT/Carbon 복합입자의 전기화학적 특성)

  • Shin, Min-Seon;Lee, Tae-Min;Lee, Sung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.112-121
    • /
    • 2019
  • In this study, silicon / carbon nanotube / carbon composite particles with high capacity were fabricated by using micro-sized silicon particles and carbon nanotubes as an anode material for lithium ion batteries. The silicon / carbon nanotube / carbon composite particles were prepared by spray drying method to prepare spherical composite particles. The composite particles have the network structure of the carbon nanotubes around the silicon particles, in which the silicon particles and the carbon nanotubes are bonded by amorphous carbon. It appears that the volume expansion of silicon is effectively buffered and the electrical contact is maintained in the network structure of the composite particles during charge-discharge cycles.

Spherical Silicon/CNT/Carbon Composite Wrapped with Graphene as an Anode Material for Lithium-Ion Batteries

  • Shin, Min-Seon;Choi, Cheon-Kyu;Park, Min-Sik;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.159-166
    • /
    • 2022
  • The assembly of the micron-sized Si/CNT/carbon composite wrapped with graphene (SCG composite) is designed and synthesized via a spray drying process. The spherical SCG composite exhibits a high discharge capacity of 1789 mAh g-1 with an initial coulombic efficiency of 84 %. Moreover, the porous architecture of SCG composite is beneficial for enhancing cycling stability and rate capability. In practice, a blended electrode consisting of spherical SCG composite and natural graphite with a reversible capacity of ~500 mAh g-1, shows a stable cycle performance with high cycling efficiencies (> 99.5%) during 100 cycles. These superior electrochemical performance are mainly attributed to the robust design and structural stability of the SCG composite during charge and discharge process. It appears that despite the fracture of micro-sized Si particles during repeated cycling, the electrical contact of Si particles can be maintained within the SCG composite by suppressing the direct contact of Si particles with electrolytes.

Effect of Additive Size on the Densification and Thermal Conductivity of AlN Ceramics with MgO-CaO-Al2O3-SiO2 Additives

  • Lee, Hwa-Jun;Cho, Woo-Seok;Kim, Hyeong Jun;Kim, Hyung-Tae;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • In this study, we investigate the effect of additive size on the densification and thermal conductivity of AlN ceramics with $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) additives. Micro-sized MCAS powder prepared via melting and nano-sized MCAS powder synthesized via the polymeric complex method are used as sintering additives. We analyze the densification behavior of AlN added with 5 wt.% of MCAS by dilatometry as well as by isothermal sintering in the temperature range of $1300{\sim}1700^{\circ}C$. AlN exhibits higher sinterability with nano-MCAS than with micro-MCAS, and both specimens approach their maximum densities when sintered at $1600^{\circ}C$ for 4 h. The thermal conductivities of AlN with 5 wt% of nano- and micro-MCAS additives sintered at $1600^{\circ}C$ are 82.6 and 32.0 W/mK, respectively. We find that nano-MCAS is more effective in sintering of AlN ceramics at lower temperatures, and thus for enhancing their thermal conductivities.

Structural and optical properties of Si nanowires grown by Au-Si island-catalyzed chemical vapor deposition (Au-Si 나노점을 촉매로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Lee, Y.H.;Kwak, D.W.;Yang, W.C.;Cho, H.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • we have demonstrated structural evolution and optical properties of Si-nanowires (NWs) synthesized on Si (111) substrates with nanoscale Au-Si islands by rapid thermal chemical vapor deposition (RTCVD). The Au-Si nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. The Si-NWs were grown by a mixture gas of SiH4 and H2 at a pressure of 1.0 Torr and temperatures of $500{\sim}600^{\circ}C$. Scanning electron microscopy measurements showed that the Si-NWs are uniformly sized and vertically well-aligned along <111> direction on Si (111) surfaces. The resulting NWs are ${\sim}60nm$ in average diameter and ${\sim}5um$ in average length. High resolution transmission microscopy measurements indicated that the NWs are single crystals covered with amorphous SiOx layers of ${\sim}3nm$ thickness. In addition, the optical properties of the NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si main optical phonon peak were observed in Raman spectra of Si-NWs, which indicates a minute stress effects on Raman spectra due to a slight lattice distortion led by lattice expansion of Si-NW structures.

Biocompatibility of 13-93 Bioactive Glass-SiC Fabric Composites

  • Park, Jewon;Na, Hyein;Choi, Sung-Churl;Kim, Hyeong-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.205-210
    • /
    • 2019
  • Bioactive glass (BG) finds limited use as a bone replacement material owing to its low mechanical properties. In order to solve this problem, the micro-sized 13-93 BG was prepared as a fabric composite with SiC microfibers, and its mechanical properties and biocompatibility were investigated in this study. The tensile strengths of BG-SiC fiber-bundle composites increased in proportion to the number of SiC fibers. In particular, even when only one SiC fiber was substituted, the tensile strength increased by 81% to 1428 MPa. In the early stage of the in-vitro test, a silica-rich layer was formed on the surface of the 13-93 BG fibers. With time, calcium phosphate grew on the silica-rich layer and the BG fibers were delaminated. On the other hand, no products were observed on the SiC fibers for 7 days, therefore, SiC fibers are expected to maintain their strength even after transplantation in the body.