• 제목/요약/키워드: Micro-Electrode

검색결과 427건 처리시간 0.027초

수전해·연료전지 가역셀에서 이중 가스 확산층의 효과 (Effect of Double Porous Layer on a Polymer Electrolyte Unitized Regenerative Fuel Cell)

  • 황철민;박대흠;정영관;김경훈;김종수
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.320-325
    • /
    • 2013
  • TUnitized reversible fuel cells (URFC) combine the functionality of a fuel cell and electrolyzer in one unitized device. For a URFC with proton exchange membrane, a titanium (Ti)-felt is applied to the gas diffusion layer (GDL) substrate at the oxygen electrode, and additionally titanium (Ti)-powders and TiN-powders are loaded in the GDL substrate as a micro porous layer (MPL). Double porous layer with TiN MPL was not acceptable for the URFC because both of fuel cell performance and electrolysis performance are degraded. The double porous layer with Ti-powder loading in the Ti-felt substrate influence rearly for the electrolysis performance. In contrast, the change of pore-size distribution brings a significant improvement of fuel cell performance under fully humidification conditions. This fact indicates that the hydrophobic meso-pores in the GDL play an important role for mass transport.

Bilirubin의 전압전류법적 파라미터에 미치는 압력의 영향 (Effect of High Pressure on Voltammetric Parameters of Bilirubin)

  • 배준웅;이흥락;김경호;박태명
    • 대한화학회지
    • /
    • 제34권4호
    • /
    • pp.340-344
    • /
    • 1990
  • 미소 백금전극을 작업전극으로 사용하여 0.1 M TEAP-DMSO 용액 중에서 Bilirubin(BR)의 산화반응의 전압전류법적 파라미터에 미치는 압력의 영향을 조사하였다. 1기압에서 1,800기압까지 압력을 증가함에 따라 산화파의 봉우리 전위는 양전위쪽으로 이동하였다. 또 압력의 증가에 따라 봉우리 전류는 계속적으로 감소하였다. BR의 산화전류는 확산지배적인 전류임을 알 수 있었다. 압력증가에 따라서 산화반응의 가역성은 거의 영향을 받지 않았다. 또한 실험 압력범위내(1~1,800기압)에서 산화파의 봉우리 전류와 Bilirubin의 농도 사이에는 좋은 직선성이 성립하였다.

  • PDF

ITO 박막의 표면 거칠기에 따른 OLED 소자의 특성 (Effect of the Surface Roughness of ITO Thin Films on the Characteristics of OLED Device)

  • 이봉근;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.49-52
    • /
    • 2009
  • We have investigated the effect of the surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of ITO thin films, we have processed photolithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the ITO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the ITO thin films. Device structure was ITO/$\alpha$-NPD/DPVB/Alq3/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer (minolta CS-1000A). The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

  • PDF

MEMS 구조 압전 마이크로폰의 최적구조 설계 (Optimal Design of a MEMS-type Piezoelectric Microphone)

  • 권민형;라용호;전대우;이영진
    • 센서학회지
    • /
    • 제27권4호
    • /
    • pp.269-274
    • /
    • 2018
  • High-sensitivity signal-to-noise ratio (SNR) microphones are essentially required for a broad range of automatic speech recognition applications. Piezoelectric microphones have several advantages compared to conventional capacitor microphones including high stiffness and high SNR. In this study, we designed a new piezoelectric membrane structure by using the finite elements method (FEM) and an optimization technique to improve the sensitivity of the transducer, which has a high-quality AlN piezoelectric thin film. The simulation demonstrated that the sensitivity critically depends on the inner radius of the top electrode, the outer radius of the membrane, and the thickness of the piezoelectric film in the microphone. The optimized piezoelectric transducer structure showed a much higher sensitivity than that of the conventional piezoelectric transducer structure. This study provides a visible path to realize micro-scale high-sensitivity piezoelectric microphones that have a simple manufacturing process, wide range of frequency and low DC bias voltage.

좁은 간격의 고압 DC 글로우 방전에서의 방전물성에 관한 연구 (A Study on the Characteristics of High Pressure DC Glow Discharge with a Narrow Gap)

  • 박재성;정희섭;신범재;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.435-437
    • /
    • 1995
  • It is important to understand tile behaviours of tile high pressure DC glow discharge with a micro gap inside a pixel of the plasmas display panel. We prepared a narrow gap discharge system and have measured electron temperature and density by means of double probe methods in high pressure which was between 100torr and 200torr. And the electrode gap was 7mm. When the pressure varied from 100torr to 200torr, the negative glow was created at a distance less than 1mm from the cathode. And the length of the faraday dark space decreased from 8mm to 5mm. Hence probe measurements was mainly, performed in the region of the Faraday dark space. The dependence of electron temperature and density on the pressure and current density was same with that of the general flow discharge, i.e. as the pressure increased the electron temperature decreased and the density increased. But the spatial electron density distribution in the Faraday dark space was highly distorted because of the effect of high pressure.

  • PDF

저온, 고압력용 강재 구조물의 용접부균열 발생과 그 대책에 관한 연구 (A study on the cracking mechanism of the welded parts in steel structures for the use of low temperature and high pressure)

  • 김영식;배차헌;구자영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.328-338
    • /
    • 1985
  • When the low temperature service steels are used as materials for welded structure, some problems-brittleness and weld cracking, etc.-occur in welded part due to the change of mechanical and metallurgical characteristics resulted from the thermal cycle during the welding procedure. In this study, the experiments were conducted to investigate the change of mechanical and metallurgical characteristics of the welded part for the low temperature and high pressure service steels. Moreover, the Static and Dynamic Implant Test Method was introduced to this study in order to find out the mechnism of weld cracking. In addition, the fracture toughnesses of welded bond were inspected under the various low temperature environments. Main results obtained are as follows; 1) The effect of the hydrogen on the fatigue characteristics of the weld bond can be estimated by the new self-contrived Dynamic Implant Test equipment. 2) The fine micro-structure and low hardness in the heat affected zone can be obtained by the small heat input multi-pass welding. 3) The susceptibility of the delayed cracking is largely affected by the condition of used electrode. 4) The transition temperature of the fracture surface in weld bond appears to be higher 20 .deg. C than that in base metal.

  • PDF

Dependence of Dielectric Layer and Electrolyte on the Driving Performance of Electrowetting-Based Liquid Lens

  • Lee, June-Kyoo;Park, Kyung-Woo;Kim, Hak-Rin;Kong, Seong-Ho
    • Journal of Information Display
    • /
    • 제11권2호
    • /
    • pp.84-90
    • /
    • 2010
  • This paper presents the effects of a dielectric layer and an electrolyte on the driving performance of an electrowetting on dielectric (EWOD)-based liquid lens. The range of tunable focal length of the EWOD-based liquid lens was highly dependent on the conditions of the dielectric layer, which included an inorganic oxide layer and an organic hydrophobic layer. Moreover, experiments on the physical and optical durability of electrolyte by varying temperature conditions, were conducted and their results were discussed. Finally, the lens with a truncated-pyramid silicon cavity having a sidewall dielectrics and electrode was fabricated by anisotropic etching and other micro-electromechanical systems (MEMS) technologies in order to demonstrate its performance. The lens with $0.6-{\mu}m$-thick $SiO_2$ layer and 10 wt% LiCl-electrolyte exhibited brilliant focal-length tunability from infinity to 3.19 mm.

은 이온도입이 세균성장에 미치는 영향 (Inhibition of Bacterial Growth with Silver Wire Iontophoresis)

  • 이재형;김주영;제갈승주
    • The Journal of Korean Physical Therapy
    • /
    • 제7권1호
    • /
    • pp.61-67
    • /
    • 1995
  • The silver cation has broad-spectrum antibiotic activity toward Gram-positive, Gram-negative, fungal. aerobic and anerobic micro-organisms. Silver has been used to care of infected wound. pyogenic arthritis, and chronic osteomyelitis. The purpose of this study was to determine whether pure silver wire iontophoresis using milliamperage direct current has an inhibitory effect on growth in vitro of 3 different species of bacteria-Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Using agarose based media, silver iontophoresis performed at 0, 1, 2, 4, 8 mA for 15 minutes. All experiments were performed in triplicate. Following iontophoresis, inhibition zone width of bacterial growth was measured with calliper. The inhibition of bacterial growth occured at the anodal silver electrode. Inhibition zone width of bacterial growth was significantly increased in all three bacterial species (p<0.05). Between bacterial species, inhibition zone width was not significantly different. Inhibition gone and amperage showed a highly significant positive linear relationship (p<0.001). The result of this study showed that pure silver wire iontophoresis with milliamperage direct current, as well as microamperage direct current, can inhibit bacterial growth in vivo.

  • PDF

CNT의 동적 거동 해석을 위한 정전기력의 선형화 (Linearized of Electrostatic Force in the Carbon Nanotube for Dynamic Behavior Analysis)

  • 이종길
    • 대한공업교육학회지
    • /
    • 제30권2호
    • /
    • pp.115-122
    • /
    • 2005
  • For an analysis of dynamic behavior in carbon nanotube(CNT) which is widely used as micro and nano-sensors, an electrostatic force of CNT was investigated. For larger gaps in between sensor and electrode the van der Waals force can be ignored. The boundary condition in the CNT was assumed to clamped-clamped case at both ends. In this paper electrostatic force is expressed as linear equation along deflection using Taylor series. The first and second terms(${\zeta}_0$ and ${\zeta}_1$) of the linear equation are analyzed. Based on the simulation results nondimensional number ${\Phi}_0$ and ${\Phi}_1$ which came from ${\zeta}_0$ and ${\zeta}_1$ were decreased according to the increment of the gap. Reduction ratio of the second term ${\zeta}_1$ is increased up to 99% along to the increment of the gap. The higher order terms can be ignored and therefore, electrostatic force can be expressed using the first two terms of the linear equation. This results play an important role in analyzing the nonlinear dynamic behavior of the CNT as well as the pull-in voltage of simply supported switches.

AZO 박막의 표면 거칠기에 따른 OLED 소자의 특성 (Effect of surface roughness of AZO thin films on the characteristics of OLED device)

  • 이봉근;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.25-29
    • /
    • 2010
  • We have investigated the effect of surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of AZO thin films, we have processed photo-lithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the AZO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the AZO thin films. Device structure was AZO/${\alpha}$-NPD/DPVB/$Alq_3$/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer. The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.