• Title/Summary/Keyword: Micro mechanical machining

Search Result 282, Processing Time 0.029 seconds

Analysis of Tool and Workpiece Setup in v-Groove Micromachining (V-그루브 미세가공에서의 공구 및 공작물 셋업 해석)

  • Cho Jung-Woo;Yang Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.957-964
    • /
    • 2006
  • As the requirement of LCD products which are large screen and have high brightness increases, the role of light guide panel (LGP) of which micro-features diffuse the light uniformly on surface is getting important. In general, there are many errors in machining like machine tool errors process error, setup error and etc. The amount of setup error in general machining is not so big in comparison with the others, so it is mostly neglected. But, especially in v-groove micromachining, setup error has a significant effect on micro-features. Low quality product and high cost are resulted from setup error. In v-groove micromachining, to confirm the effect of setup error, it is identified and then setup error synthesis model is derived from analysis of tool and workpiece setup. In addition, to predict the micro-features affected by setup error and enhance the production efficiency, the setup condition satisfying the tolerance of micro-features is geometrically analyzed and presented.

Surface Smoothing of Blasted Glass Micro-Channels Using Abrasive Waterjet (워터젯을 이용한 블라스팅 유리 마이크로 채널의 표면거칠기 개선)

  • Son, Sung-Gyun;Han, Sol-Yi;Sung, In-Ha;Kim, Wook-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1159-1165
    • /
    • 2013
  • Powder blasting, which is an efficient micromachining method for glass, silicon, and ceramics, has a critical disadvantage in that the surface finish is poor owing to the brittle fracture of materials. Low-pressure waterjet machining can be applied to smoothen the rough surface inside the blasted structure. In this study, the surface roughness and sectional dimension of micro-channels are observed during the repetitive application of a waterjet to blasted micro-channels. The asperities and subsurface cracks created by blasting are removed by waterjet machining. Along with the surface roughness, it is found that the sectional dimension increases and the edges of the finished micro-channel become slightly round. Finally, a microfluidic chip is machined by the blasting-waterjet process and a transparent microfluidic channel is obtained efficiently.

A Study on the Ultra-Precision Polishing Technique for the Upper Surface of the Micro-Channel Structure (미세채널 구조물 상부의 초정밀 연마 기술 연구)

  • 강정일;이윤호;안병운;윤종학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.313-317
    • /
    • 2003
  • Micro-Channel ultra-precision polishing is a new technology used in magnetic field-assisted relishing. In this paper, an electromagnet or the i18 of test system was designed and manufactured. A size of magnetic abrasive is used on 25~75${\mu}{\textrm}{m}$ and for the polish a micro-channel upper part. A surface of channel which is not even is manufactured using magnetic abrasive finishing at upper surface of micro-channel. As a result, the surface roughness rose by 80% after upper surface of micro- channel was polished up 8 minutes by polishing.

  • PDF

Machining Characteristics Elevation by Micro-structure Improvement of Aluminum Alloy (알루미늄 합금의 미세조직 개선에 의한 절삭 가공 특성 향상)

  • 채왕석;김경우;최현민;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.290-295
    • /
    • 2002
  • This research has been carried out to experiment machining characteristics by elements addition and subtraction of AC8B and sample that is used fur car piston materials. 1.Mechanical properties of development sample expressed unique mechanical properties than AC8B. 2. Cutting resistance of development sample decreased about 10% than AC8B according to increase of the cutting speed. 3. According to increase of the feedrate, all comparison workpiece found that specific cutting resistance decrease. 4. It was found that sample's machining characteristics that is developed by addition and subtraction of elements improves.

  • PDF

Prediction of the Heat-Affected Zone in the Micro Electric Discharge Machining (미세 방전가공에서의 열영향층 예측)

  • Kim T.G.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.422-425
    • /
    • 2005
  • This study predicts the heat-affected zone (HAZ) after electrical discharge machining. To predict HAZ, the temperature distribution is calculated using FEM. Heat flux is calculated from electrical energy, and it can be assumed Gaussian distribution. Plasma channel expands as time goes. Copper and NAK80 are used as the workpiece material. The depth of HAZ in simulation is determined by temperature distribution. The simulation results were compared with a developed actual single discharge crater. Through investigating the cross section of simulated & actual craters, the depth of HAZ in simulation and experiment are compared. Simulation model can predict the crater shape.

  • PDF

Characteristics of Chemical-assisted Ultrasonic Machining of Glass (화학적기법을 이용한 유리의 초음파가공 특성)

  • Kim, B.H.;Jeon, S.K.;Kim, H.Y.;Jeon, B.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1349-1354
    • /
    • 2003
  • Ultrasonic Machining process is an efficient and economical means of precision machining on glass and ceramic materials. However, the mechanics of the process with respect to crack initiation and propagation, and stress development in the ceramic workpiece subsurface are still not well understood. In this research, we investigate the basic mechanism of chemical assisted ultrasonic machining(CUSM) of glass through the experimental approach. For the purpose of this study, we designed and fabricated the desktop micro ultrasonic machine. The feed is controlled precisely by using the constant load control system. During the machining experiment, the effects of HF(hydrofluoric acid) characteristics and machining condition on the surface roughness and the material removal rate are measured and compared.

  • PDF

A Study of the Effects of Pressure Velocity and Fluid Viscosity in Abrasive Machining Process (입자연마가공에서의 압력 속도 및 유체점도의 영향에 대한 고찰)

  • Yang, Woo-Yul;Yang, Ji-Chul;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • Interest in advanced machining process such as AJM(abrasive jet machining) and CMP(chemical-mechanical polishing) using micro/nano-sized abrasives has been on the increasing demand due to wide use of super alloys, composites, semiconductor and ceramics, which are difficult to or cannot be processed by traditional machining methods. In this paper, the effects of pressure, wafer moving velocity and fluid viscosity were investigated by 2-dimensional finite element analysis method considering slurry fluid flow. From the investigation, it could be found that the simulation results quite corresponded well to the Preston's equation that describes pressure/velocity dependency on material removal. The result also revealed that the stress and corresponding material removal induced by the collision of particle may decrease under relatively high wafer moving speed due to the slurry flow resistance. In addition, the increase in slurry fluid viscosity causes the reduction of material removal rate. It should be noted that the viscosity effect can vary with the shape of abrasive particle.

Surface characteristics on the optical pattern die of light guiding plate by machining types (가공방법에 따른 소형 도광판용 광학패턴 금형의 표면특성연구)

  • Do, Young-Soo;Kim, Jong-Sun;Go, Young-Bae;Kim, Jong Duck;Yoon, Kyung-Hwan;Hwang, Chul-Jin
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.1-4
    • /
    • 2008
  • Micro pattern is applied to the light guiding plate(LGP) to enhance the uniformity of the brightness of the LCD. The micro cones are molded in intaglio on the surface of the LGP. The surface roughness of each cone was 40nm and 38nm in negative and positive die for laser ablation. In chemical etching, the surface roughness was 25nm, 24nm in negative and positive. And the surface roughness of negative and positive dies were 4nm and 5nm for LIGA-reflow process.

  • PDF

Characteristics of Micro EDM using Wire Electrical Discharge Grinding for Al2O3/CNTs Hybrid Materials (Al2O3/CNTs 하이브리드소재의 와이어 방전연삭을 이용한 마이크로 방전가공 특성)

  • Tak, Hyun-Seok;Kim, Jong-Hun;Lim, Han-Suk;Lee, Choon-Tae;Jeong, Young-Keun;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • Electrical discharge machining (EDM) is an attractive machining technique but it requires electrically conductive ceramic materials. In this study, Alumina matrix composites reinforced with CNTs were fabricated through CNT purification, mixing, compaction and spark plasma sintering (SPS) processes. $Al_2O_3$ nanocomposites with the different CNT concentrations were synthesized. The mechanical and electrical characteristics of $Al_2O_3$/CNTs composites were examined in order to apply the materials to the EDM process. In addition, micro-EDM using wire electrical discharge grinding (WEDG) was conducted under the various EDM parameters to investigate the machining characteristics of machined hole by Field Emission Scanning Electron Microscope (FE-SEM). The results show that $Al_2O_3$/CNTs 10%Vol. was more suitable than the other materials because high conductivity and large discharge energy caused violent sparks resulting in bad machining accuracy and surface quality.

Selective Removal of Mask by Mechanical Cutting for Micro-patterning of Silicon (마스크에 대한 기계적 가공을 이용한 단결정 실리콘의 미세 패턴 가공)

  • Jin, Won-Hyeog;Kim, Dae-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.60-67
    • /
    • 1999
  • Micro-fabrication techniques such as lithography and LIGA processes usually require large investment and are suitable for mass production. Therefore, there is a need for a new micro-fabrication technique that is flexible and more cost effective. In this paper a novel, economical and flexible method of producing micro-pattern on silicon wafer is presented. This method relies on selective removal of mask by mechanical cutting. Then micro-pattern is produced by chemical etching. V-shaped grooved of about 3 ${\mu}m$ wide and 2 ${\mu}m$ deep has been made on ${SiO_2}m$ coated silicon wafer with this method. This method may be utilized for making microstructures in MEMS application at low cost.

  • PDF