DOI QR코드

DOI QR Code

Surface Smoothing of Blasted Glass Micro-Channels Using Abrasive Waterjet

워터젯을 이용한 블라스팅 유리 마이크로 채널의 표면거칠기 개선

  • Son, Sung-Gyun (Dept. of Mechanical Design Engineering, Korea Polytechnic Univ.) ;
  • Han, Sol-Yi (Dept. of Mechanical Design Engineering, Korea Polytechnic Univ.) ;
  • Sung, In-Ha (Dept. of Mechanical Engineering, Hannam Univ.) ;
  • Kim, Wook-Bae (Dept. of Mechanical Design Engineering, Korea Polytechnic Univ.)
  • 손성균 (한국산업기술대학교 기계설계공학과) ;
  • 한솔이 (한국산업기술대학교 기계설계공학과) ;
  • 성인하 (한남대학교 기계공학과) ;
  • 김욱배 (한국산업기술대학교 기계설계공학과)
  • Received : 2013.02.13
  • Accepted : 2013.08.30
  • Published : 2013.12.01

Abstract

Powder blasting, which is an efficient micromachining method for glass, silicon, and ceramics, has a critical disadvantage in that the surface finish is poor owing to the brittle fracture of materials. Low-pressure waterjet machining can be applied to smoothen the rough surface inside the blasted structure. In this study, the surface roughness and sectional dimension of micro-channels are observed during the repetitive application of a waterjet to blasted micro-channels. The asperities and subsurface cracks created by blasting are removed by waterjet machining. Along with the surface roughness, it is found that the sectional dimension increases and the edges of the finished micro-channel become slightly round. Finally, a microfluidic chip is machined by the blasting-waterjet process and a transparent microfluidic channel is obtained efficiently.

파우더 블라스팅은 미세 유리가공법으로서 가공속도가 빠르고 저비용의 장점이 있지만 유리를 취성파괴 시키기 때문에 표면거칠기가 좋지않다. 블라스팅된 표면에 저압의 워터젯을 분사하여 표면에서의 연마 슬러리의 흐름을 통해 표면거칠기를 저감할 수 있다. 본 연구에서는 소다라임 유리에 블라스팅으로 마이크로 채널을 가공한 후 워터젯을 연속 적용하고, 마이크로 채널의 표면거칠기 및 단면 형상의 변화의 과정을 관찰하였다. 워터젯의 적용결과, 초기단계에서는 블라스팅에 의한 미세 요철이 제거되었고, 이후 표면하부의 크랙이 제거되어 평균 표면거칠기 50 nm 근방의 매끈한 표면을 얻을 수 있었다. 표면거칠기 저감에 동반하여 채널단면의 확장 과정도 함께 관측하였다. 마지막으로 제안한 방법에 의해 미세유체칩의 가공 결과를 제시하였다.

Keywords

References

  1. Geschke, O., Klank, H. and Tellemann, P., 2004, Microsystem Engineering of Lab-on-a-Chip Devices, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 161-168.
  2. Zribi, A. and Fortin, J., 2003, Functional Thin Films and Nanostructures, Springer Science+Business Media, New York, pp. 70-72.
  3. Iliescu, C. Chen, B. and Miao, J., 2008, "On the Wet Etching of Pyrex Glass," Sens. Actuator A, Vol. 143, pp. 154-161. https://doi.org/10.1016/j.sna.2007.11.022
  4. Jeon, S. K., Shin, Y. J., Kim, B. H., Kim H. Y. and Jeon, B. H., 2003, "Micro-Machining of Glasses using Chemical-assisted Ultrasonic Machining," Trans. of the KSME (A), Vol. 27, No. 12, pp. 2085-2091. https://doi.org/10.3795/KSME-A.2003.27.12.2085
  5. Takeuchi, Y., Sawada, K. and Sata, T., 1996, "Ultraprecision 3D Micromachining of Glass," CIRP Annals, Vol. 45, No. 1, pp. 401-404. https://doi.org/10.1016/S0007-8506(07)63090-X
  6. Sayah, A., Thivolle, P. A., Pararshar, V. K. and Gijs, M. A. M., 2010, "Three-dimensional Mixers with non- Planar Microchannels in a Monolithic Glass Substrate using Oblique Powder Blasting," J. Micromech. Microeng, vol. 20, 085028. https://doi.org/10.1088/0960-1317/20/8/085028
  7. Jauregui, A. L., Siller, H. R., Rodrigues, C. A. and Elias-Zuniga, A., 2010, "Evaluation of Micromechanical Manufacturing Processes for Microfluidic Devices," Int J Adv Manuf Technol, Vol. 48, pp. 963-972. https://doi.org/10.1007/s00170-009-2326-y
  8. Shen, M, Walter, S., Dovat, L. and Gijs, M. A. M., 2011, "Planar Micro-Direct Methanol Fuel Cell Prototyped by Rapid Powder Blasting," Microelectronic Engineering, Vol. 88, pp. 1884-1886. https://doi.org/10.1016/j.mee.2010.12.079
  9. Kirby, B. J. and Hasselbrink, E. F., 2004, "Zeta Potential of Microfluidic Substrates: 1. Theory, Experimental Techniques, and Effects on Separation," Electrophoresis, Vol. 25, pp. 187-202. https://doi.org/10.1002/elps.200305754
  10. Ghobeity, A., Crabtree, H. J., Papini, M. and Spelt, J. K., 2012, "Characterisation and Comparison of Microfluidic Chips formed using Abrasive Jet Micromachining and Wet Etching," J. Micromech. Microeng., Vol. 22, 025014. https://doi.org/10.1088/0960-1317/22/2/025014
  11. Wensink, H., Schalautmann, S., Goedbloed, M. H. and Elwenspoek, M. C., 2002, "Fine Tuning the Roughness of Powder Blasted Surfaces," J. Micromech. Microeng., Vol. 12, pp. 616-620. https://doi.org/10.1088/0960-1317/12/5/316
  12. Mineta, T., Takada, T., Makino, E., Kawashima, T. and Shibata, T., 2009, "A Wet Abrasive Blasting Process for Smooth Micromachining of Glass by Ductile-Mode Removal," J. Micromech. Microeng., Vol. 19, 015031. https://doi.org/10.1088/0960-1317/19/1/015031
  13. Hutchings, I. M., 1992, "Ductile-Brittle Transitions and Wear Maps for the Erosion and Abrasion of Brittle Materials," J. Phys. D: Appl. Phys., Vol. 25, pp. 212-221. https://doi.org/10.1088/0022-3727/25/1A/033
  14. Wensink, H. and C.Elwenspoek, M., 2002, "A closer look at the Ductile-Brittle Transition in Solid particle Erosion," Wear, Vol. 253, pp. 1035-1043. https://doi.org/10.1016/S0043-1648(02)00223-5
  15. Wensink, H., Jansen, H. V., Berenschot, J. W. and Elwenspoek, M. C., 2001, "Mask Materials for Powder Blasting," J. Micromech. Microeng., Vol. 10, pp. 175-180.
  16. Slikkerveer, P. J., Bouten, P. C. P., Veld, F. H. and Scholten, H., 1998, "Erosion and Damage by Sharp Particles," Wear, Vol. 217, pp. 237-250. https://doi.org/10.1016/S0043-1648(98)00187-2