• 제목/요약/키워드: Micro cantilever

검색결과 136건 처리시간 0.023초

정전력을 이용한 마이크로 그리퍼의 설계 및 제작 (Design and Fabrication of Micro Gripper Using Electrostatic Force)

  • 안동섭;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.422-424
    • /
    • 1994
  • A comb drive electrostatic micro gripper was designed and fabricated. We designed it analytically using electrostatic force and cantilever deflection equation. In fabrication, we used LIGA-like technology consisted of Ni electroplating through polyimide patterned by $O_2$ Plasma RIE and Al sacrificial layer. This micro gripper was designed to handle an optical fiber which is $125{\mu}m$ in diameter.

  • PDF

설계변수 표본에 근거한 구조시스템 모달 특성의 통계적 예측 (Statistical Estimation of Modal Characteristics of a Structural System Based on Design Variable Samples)

  • 김용우;유홍희
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1314-1319
    • /
    • 2009
  • The design methods of mechanical systems are largely classified into deterministic methods and stochastic methods. In deterministic methods, design parameters are assumed to have fixed values. On the other hand, in stochastic methods, design parameters are assumed to be statistically distributed. When a stochastic method is employed, statistical characteristics of the populations of design variables are assumed to be known. However, very often, it is almost impossible or very expensive to obtain the statistical characteristics of the populations. Therefore a sample survey method is usually employed for stochastic methods. This paper describes the procedure of estimating the statistical characteristics of populations by employing sample data sets. An example of AFM micro cantilever beam is employed to show the effectiveness of the procedure.

Silicon Micro-probe Card Using Porous Silicon Micromachining Technology

  • Kim, Young-Min;Yoon, Ho-Cheol;Lee, Jong-Hyun
    • ETRI Journal
    • /
    • 제27권4호
    • /
    • pp.433-438
    • /
    • 2005
  • We present a new type of silicon micro-probe card using a three-dimensional probe beam of the cantilever type. It was fabricated using KOH and dry etching, a porous silicon micromachining technique, and an Au electroplating process. The cantilever-type probe beam had a thickness of $5 {\mu}m$, and a width of $50{\mu}$ and a length of $800 {\mu}m$. The probe beam for pad contact was formed by the thermal expansion coefficient difference between the films. The maximum height of the curled probe beam was $170 {\mu}m$, and an annealing process was performed for 20 min at $500^{\circ}C$. The contact resistance of the newly fabricated probe card was less than $2{\Omega}$, and its lifetime was more than 20,000 turns.

  • PDF

AFM에서의 정량적 힘 측정을 위한 마이크로 캔틸레버의 강성 교정 (Accurate Determination of Spring Constants of Micro Cantilevers for Quantified Force Metrology in AFM)

  • 김민석;최재혁;김종호;박연규
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.96-104
    • /
    • 2007
  • Calibration of the spring constants of atomic force microscopy (AFM) cantilevers is one of the issues in biomechanics and nanomechanies for quantified force metrology at pieo- or nano Newton level. In this paper, we present an AFM cantilever calibration system: the Nano Force Calibrator (NFC), which consists of a precision balance and a one-dimensional stage. Three types of AFM cantilevers (contact and tapping mode) with different shapes (beam and V) and spring constants (42, 1, 0.06 N $m^{-1}$) are investigated using the NFC. The calibration results show that the NFC can calibrate the micro cantilevers ranging from 0.01 ${\sim}$ 100 N $m^{-1}$ with relative uncertainties of less than 2%.

차세대 이동통신시스템에 적용을 위한 저전압구동의 RFMEMS 스위치 (Lour Voltage Operated RFMEMS Switch for Advanced Mobile System Applications)

  • 서혜경;박재영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2395-2397
    • /
    • 2005
  • A low voltage operated piezoelectric RF MEMS in-line switch has been realized by using silicon bulk micromachining technologies for advanced mobile/wireless applications. The developed RF MEMS in-line switches were comprised of four piezoelectric cantilever actuators with an Au contact metal electrode and a suspended Au signal transmission line above the silicon substrate. The measured operation dc bias voltages were ranged from 2.5 to 4 volts by varying the thickness and the length of the piezoelectric cantilever actuators, which are well agreed with the simulation results. The measured isolation and insertion loss of the switch with series configuration were -43dB and -0.21dB (including parasitic effects of the silicon substrate) at a frequency of 2GHz and an actuation voltage of 3 volts.

  • PDF

탄성 버퍼층 결합형 마이크로 프로브 (Elastic Buffer Layer Coupled Micro Probe)

  • 최주찬;최영찬;정동건;공성호
    • 센서학회지
    • /
    • 제22권5호
    • /
    • pp.374-378
    • /
    • 2013
  • In this paper, a new structure of probe unit is designed and fabricated with PDMS, which is well-known elastic material, as a buffer layer for increasing overdrive force and mechanical strength. In general, PDMS is widely used as actuation material due to its elasticity and compatibility of fabrication process. In this work, PDMS layer is chosen for mechanical elasticity of the proposed probe unit. We achieved the high overdrive force by placing PDMS buffer layer under the silicon based cantilever due to its elasticity. Moreover, the relation between prove length and overdrive force was measured by experiment in this work. Therefore, the various specifications of the micro prove unit can be designed by using the results of this work.

열풍동형 폴리실리콘 마이크로 액츄에이터의 제작 및 특성 분석 (Fabrication of thermally driven polysilicon micro actuator and its characterization)

  • 이종현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.146-150
    • /
    • 1996
  • A thermal micro actualtor has been fabricated using surface micromachining techniques. It consists of doped ploysilicon as a moving part and TEOS(Tetra Ethyl Ortho Silicate) as a sacrificial layer. The polysilicon was annealed for the reduction of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE(vapor phase etching)process was also used as an effective release method for the elimination of sacrificaial layer. With noliquid involved during any of the steps for relasing, unlike other reported relase techniques, the HF VPE pocess has produced polysilicon microstructures with virtually no process-induced stiction problem. The actuation is incured by the thermal expasion due to current flow in active polysilicon cantilever, which motion is amplified bylever mechanism. The thickness of pllysilicon is 2 .mu. m and the length of active and passive polysilicon cantilever are 500 .mu. m, respectively. The moving distance of polysilicon actuator was experimentally conformed as large as 21 .mu. m at the input voltage level of 10 V and 50Hz square wave. These micro actuator technology can be utilized for the fabrication of MEMS (microlectromechanical system) such as microrelay, which requires large displacement or contact force but relatively slow response.

  • PDF

고온용 MEMS 재료의 마이크로 파괴거동에 관한 연구 (A Study on the Micro-fracture Behavior of the MEMS Material at Elevated Temperature)

  • 우병훈;배창원;문경만;배성열;;김윤해
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.550-555
    • /
    • 2007
  • The effective fracture toughness testing of materials intended for application in Micro Electro Mechanical Systems (MEMS) devices is required in order to improve understanding of how micro sized material used in device may be expected to perform upon the micro scale. ${\gamma}$-TiAl based materials are being considered for application in MEMS devices at elevated temperatures. Especially, in Alloy 4, both ${\alpha}_2$ and ${\gamma}$ lamellae were altered markedly in 3,000 h, $700^{\circ}C$ exposure. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. The materials were examined 2 types Alloy 4 on heat exposed specimen($700^{\circ}C$, 3,000 h) and no heat exposed one. Micro sized cantilever beams were prepared mechanical polishing on both side at $25{\sim}30{\mu}m$ and electro final stage polishing to observe lamellar orientation of same colony with EBSD (Electron Backscatter Diffraction Pattern). Through lamellar orientation as inter-lamellae or trans-lamellae, Cantilever beam was fabricated with Focused Ion Beam(FIB). The directional behavior of the lamellar structure was important property in single material, because of the effects of the different processing method and variations in properties according to lamellar orientation. In MEMS application, it is first necessary to have a reliable understanding of the manufacturing methods to be used to produce micro structure.