• Title/Summary/Keyword: Micro Chip

Search Result 530, Processing Time 0.025 seconds

A Study About PDMS-Glass Based Thermopneumatic Micropump Integrated with Check Valve (체크밸브가 달린 열공압 방식의 PDMS-유리마이크로 펌프에 관한 연구)

  • Ko, Young-June;Cho, Woong;Ahn, Yoo-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.720-727
    • /
    • 2008
  • Microfluidic single chip integrating thermopneumatic micropump and micro check valve are developed. The micropump and micorvalve are made of biocompatible materials, glass and PDMS, so as to be applicable to the biochip. By using the passive-type check valve, backward flow and fluid leakage are blocked and flow control is stable and precise. The chip is composed of three PDMS layers and a glass substrate. In the chip, flow channel and pump chamber were made on the PDMS layers by the replica molding technique and pump heater was made on the glass substrate by Cr/Au deposition. Diameter of the pump chamber is 7 mm and the width and depth of the channel are 200 and $180{\mu}m$, respectively. The PDMS layers chip and the heater deposited glass chip are combined by a jig and a clamp for pumping operation, and they are separable so that PDMS chip is used as a disposable but the heater chip is able to be used repeatedly. Pumping performance was simulated by CFD software and investigated experimentally. The performance was the best when the duty ratio of the applied voltage to the heater was 33%.

Design of an One-Chip Controller for an Electronic Dispenser (전자 디스펜서용 단일칩 제어기 설계)

  • Won, Young-Uk;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.137-140
    • /
    • 2005
  • The electronic dispenser is composed of electronic part and mechanical part. Electronic part is consisted of input keypad, micro-controller, display module, and pump module. In this paper we designed micro-controller for electronic part. The micro-controller controls display module and pump module. The display module is composed by LCD device, and the pump module is composed by motor device. The micro-controller for an electronic dispenser is designed by VHDL. We used WX12864APl for the LCD device and SPS20 for the stepping motor. Also, the micro-controller is designed by Altera Quartus tool and verified with Agent 2000 Design-kit using APEX20K Device. In this paper, we present possibility to adopt of biotechnology field through designing of one-chip controller for an electronic dispenser.

  • PDF

An Efficient MPEG-4 Video Codec using Low-power Architectural Engines

  • Bontae Koo;Park, Juhyun;Park, Seongmo;Kim, Seongmin;Nakwoong Eum
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1308-1311
    • /
    • 2002
  • We present a low-power MPEG-4 video codec chip capable of delivering high-quality video data in wireless multimedia applications. The discussion will focus on the architectural design techniques for implementing a high-performance video compression/decompression chip at low power architectures. The proposed MPEG-4 video codec can perform 30 frames/s of QCIF or 7.5 frame/s of CIF at 27MHz for 128k∼144kbps. By introducing the efficiently optimized Frame Memory Interface architecture, low power motion estimation and embedded ARM microprocessor and AMBA interface, the proposed MPEG-4 video codec has low power consumption for wireless multimedia applications such as IMT-2000.

  • PDF

Nucleate Boiling Heat Transfer from Micro Finned Surfaces with Subcooled FC-72 (FC-72를 이용한 마이크로 핀 표면에서의 핵비등 열전달)

  • Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Sung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.410-415
    • /
    • 2008
  • To evaluate the performance of nucleate boiling heat transfer between a plain and micro-fin surfaces, the experimental tests have been carried out under various conditions with fluorinert liquid FC-72, which is chemically and electrically stable. Two kinds of micro fins with the dimensions of $200{{\mu}m}{\times}20{{\mu}m}$ and $100{{\mu}m}{\times}10{{\mu}m}$ (width x height) were fabricated on the surface of a silicon chip. The experiments were performed on the liquid subcooling of 5, 10 and 20K under the atmospheric condition. The presented data showed a similar trend in the comparison with result of Rainey & You. Due to its expanded surface areas, the heat flux properties has been significantly enhanced on micro-fin surface comparing to the plain surface.

A study on the Development of Micro Hole Drilling Machine and its Mechanism (미소경 드릴링 머신의 개발과 절삭현상의 연구)

  • Paik, In-Hwan;Chung, Woo-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 1995
  • Micro Drills have found ever wider application. However micro drilling is a machining to integrate the difficult machinablities such as tool stiffness, position control and revolution accuracy, and is known to cost and time consuming. So, this study aimed to practice ultraminiature drilling(0.05 .phi. ) wiht simple component, if possible. System is developed as the three modules : feed drives, spindle and monitoring part. The dynamics of measured current signals from the spindle of Micro Hole Drilling machine are investigated to establish the criteria of stepfeed mechanism. Cutting experiments identify the relationship of spindle rpm, feed rate and tool life. The smaller drill diameter is, the more suitable cutting condition have to be selected because of chip packing.

  • PDF

Fabrication and Application of Micro Polymer Chip Platform for Rare Cell Sample Preparation (희귀 세포 샘플 준비를 위한 마이크로 폴리머 칩 플랫폼 제작 및 활용)

  • Park, Taehyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.217-222
    • /
    • 2018
  • In this paper, a new micro polymer chip platform and protocol were developed for rare cell sample preparation. The proposed platform and protocol overcome the current limitation of the dilution method which is based on statistics and the FACS method which expensive and requires fluorescence staining. It allows collecting exact number of target cells simply and selectively because the cells are visually confirmed during the collecting process. The collected cells can be transported or spiked into a desired locations, such as a microchamber, without cell loss. This research may applicable not only to a rare cell sample preparation for Lab on a Chip cancer diagnosis, but also to a single/double/multiple cell sample preparation for a cell analysis field. To verify this platform and protocol, five human breast cancer cells (MCF-7) were collected and transported into a hemocytometer chamber.

Highly Sensitive Detection of Pathogenic Bacteria Using PDMS Micro Chip Containing Glass Bead (유리비드를 포함한 PDMS 마이크로칩을 이용한 고감도 감염성 병원균 측정에 관한 연구)

  • Won, Ji-Yeong;Min, Jun-Hong
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.432-438
    • /
    • 2009
  • Here, we demonstrated simple nucleic acid, RNA, concentration method using polymer micro chip containing glass bead ($100\;{\mu}m$). Polymer micro chip was fabricated by PDMS ($1.5\;cm\;{\times}\;1.5\;cm$, $100\;{\mu}m$ in the height) including pillar structure ($160\;{\mu}m\;(I)\;{\times}\;80\;{\mu}m\;(w)\;{\times}\;100\;{\mu}m\;(h)$, gap size $50\;{\mu}m$) for blocking micro bead. RNA could be adsorbed on micro glass bead at low pH by hydrogen bonding whereas RNA was released at high pH by electrostatic force between silica surface and RNA. Amount of glass beads and flow rate were optimized in aspects of adsorption and desorption of RNA. Adsorption and desorption rate was measured with real time PCR. This concentrated RNA was applied to amplification micro chip in which NASBA (Nucleic Acid Sequence Based Amplification) was performed. As a result, E.coli O157 : H7 in the concentration of 10 c.f.u./10 mL was successfully detected by these serial processes (concentration and amplification) with polymer micro chips. It implies this simple concentration method using polymer micro chip can be directly applied to ultra sensitive method to measure viable bacteria and virus in clinical samples as well as environmental samples.

Microfilter Chip Fabrication for Bead-Based Immunoassay (비드를 이용한 면역분석용 마이크로필터 칩의 제작)

  • Lee, Seung-Woo;Ahn, Yoo-Min;Chai, Young-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1429-1434
    • /
    • 2004
  • Immunoassay is one of the important analytical methods for clinical diagnoses and biochemical studies, but needs a long time, troublesome procedures and expensive reagents. In this study, therefore, we propose the micro filter chip with microbeads for immunoassay, which has pillar structures. The advantage of the proposed micro filter chip is to use simple fabrication process and cheap materials. The mold was made by the photolithography technique with Si wafer and negative photoresist SU-8. The replica was made of PDMS, bonded on the pyrex glass. The micro filter chip consists of inlet channel, filter chamber and outlet channel. HBV (Hepatitius B virus) monoclonal antibody (Ag1) labeled with biotin were immobilized onto streptavidin coated beads of 30∼50 $\mu$m size. Fluorescein isothiocyanate (FITC)-labeled HBV monoclonal antibody (Ag8) was used to detect HBsAg (Hebatitis B virus surface Antigen), and fluorescence intensity was monitored by epi-fluorescence microscope. In this study, the immune response of less than 30 min was obtained with with the use of 100 $m\ell$ of sample.

Study on Joint of Micro Solder Bump for Application of Flexible Electronics (플렉시블 전자기기 응용을 위한 미세 솔더 범프 접합부에 관한 연구)

  • Ko, Yong-Ho;Kim, Min-Su;Kim, Taek-Soo;Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.4-10
    • /
    • 2013
  • In electronic industry, the trend of future electronics will be flexible, bendable, wearable electronics. Until now, there is few study on bonding technology and reliability of bonding joint between chip with micro solder bump and flexible substrate. In this study, we investigated joint properties of Si chip with eutectic Sn-58Bi solder bump on Cu pillar bump bonded on flexible substrate finished with ENIG by flip chip process. After flip chip bonding, we observed microstructure of bump joint by SEM and then evaluated properties of bump joint by die shear test, thermal shock test, and bending test. After thermal shock test, we observed that crack initiated between $Cu_6Sn_5IMC$ and Sn-Bi solder and then propagated within Sn-Bi solder and/or interface between IMC and solder. On the other hands, We observed that fracture propated at interface between Ni3Sn4 IMC and solder and/or in solder matrix after bending test.

GaN Etch Process System using Parallel Plasma Source for Micro LED Chip Fabrication (병렬 플라즈마 소스를 이용한 마이크로 LED 소자 제작용 GaN 식각 공정 시스템 개발)

  • Son, Boseong;Kong, Dae-Young;Lee, Young-Woong;Kim, Huijin;Park, Si-Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.32-38
    • /
    • 2021
  • We developed an inductively coupled plasma (ICP) etcher for GaN etching using a parallel plasma electrode source with a multifunctional chuck matched to it in order for the low power consumption and low process cost in comparison with the conventional ICP system with a helical-type plasma electrode source. The optimization process condition using it for the micro light-emitting diode (µ-LED) chip fabrication was established, which is an ICP RF power of 300 W, a chuck power of 200 W, a BCl3/Cl2 gas ratio of 3:2. Under this condition, the mesa structure with the etch depth over 1 ㎛ and the etch angle over 75° and also with no etching residue was obtained for the µ-LED chip. The developed ICP showed the improved values on the process pressure, the etch selectivity, the etch depth uniformity, the etch angle profile and the substrate temperature uniformity in comparison with the commercial ICP. The µ-LED chip fabricated using the developed ICP showed the similar or improved characteristics in the L-I-V measurements compared with the one fabricated using the conventional ICP method