• Title/Summary/Keyword: Metropolis-Hastings algorithm

Search Result 42, Processing Time 0.03 seconds

Application of Bayesian Approach to Parameter Estimation of TANK Model: Comparison of MCMC and GLUE Methods (TANK 모형의 매개변수 추정을 위한 베이지안 접근법의 적용: MCMC 및 GLUE 방법의 비교)

  • Kim, Ryoungeun;Won, Jeongeun;Choi, Jeonghyeon;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.300-313
    • /
    • 2020
  • The Bayesian approach can be used to estimate hydrologic model parameters from the prior expert knowledge about the parameter values and the observed data. The purpose of this study was to compare the performance of the two Bayesian methods, the Metropolis-Hastings (MH) algorithm and the Generalized Likelihood Uncertainty Estimation (GLUE) method. These two methods were applied to the TANK model, a hydrological model comprising 13 parameters, to examine the uncertainty of the parameters of the model. The TANK model comprises a combination of multiple reservoir-type virtual vessels with orifice-type outlets and implements a common major hydrological process using the runoff calculations that convert the rainfall to the flow. As a result of the application to the Nam River A watershed, the two Bayesian methods yielded similar flow simulation results even though the parameter estimates obtained by the two methods were of somewhat different values. Both methods ensure the model's prediction accuracy even when the observed flow data available for parameter estimation is limited. However, the prediction accuracy of the model using the MH algorithm yielded slightly better results than that of the GLUE method. The flow duration curve calculated using the limited observed flow data showed that the marginal reliability is secured from the perspective of practical application.

Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique (Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석)

  • Choi, Jeonghyeon;Jang, Suhyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

On statistical Computing via EM Algorithm in Logistic Linear Models Involving Non-ignorable Missing data

  • Jun, Yu-Na;Qian, Guoqi;Park, Jeong-Soo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.181-186
    • /
    • 2005
  • Many data sets obtained from surveys or medical trials often include missing observations. When these data sets are analyzed, it is general to use only complete cases. However, it is possible to have big biases or involve inefficiency. In this paper, we consider a method for estimating parameters in logistic linear models involving non-ignorable missing data mechanism. A binomial response and normal exploratory model for the missing data are used. We fit the model using the EM algorithm. The E-step is derived by Metropolis-hastings algorithm to generate a sample for missing data and Monte-carlo technique, and the M-step is by Newton-Raphson to maximize likelihood function. Asymptotic variances of the MLE's are derived and the standard error and estimates of parameters are compared.

  • PDF

Bayesian Analysis for Heat Effects on Mortality

  • Jo, Young-In;Lim, Youn-Hee;Kim, Ho;Lee, Jae-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.705-720
    • /
    • 2012
  • In this paper, we introduce a hierarchical Bayesian model to simultaneously estimate the thresholds of each 6 cities. It was noted in the literature there was a dramatic increases in the number of deaths if the mean temperature passes a certain value (that we call a threshold). We estimate the difference of mortality before and after the threshold. For the hierarchical Bayesian analysis, some proper prior distribution of parameters and hyper-parameters are assumed. By combining the Gibbs and Metropolis-Hastings algorithm, we constructed a Markov chain Monte Carlo algorithm and the posterior inference was based on the posterior sample. The analysis shows that the estimates of the threshold are located at $25^{\circ}C{\sim}29^{\circ}C$ and the mortality around the threshold changes from -1% to 2~13%.

Improved MCMC Simulation for Low-Dimensional Multi-Modal Distributions

  • Ji, Hyunwoong;Lee, Jaewook;Kim, Namhyoung
    • Management Science and Financial Engineering
    • /
    • v.19 no.2
    • /
    • pp.49-53
    • /
    • 2013
  • A Markov-chain Monte Carlo sampling algorithm samples a new point around the latest sample due to the Markov property, which prevents it from sampling from multi-modal distributions since the corresponding chain often fails to search entire support of the target distribution. In this paper, to overcome this problem, mode switching scheme is applied to the conventional MCMC algorithms. The algorithm separates the reducible Markov chain into several mutually exclusive classes and use mode switching scheme to increase mixing rate. Simulation results are given to illustrate the algorithm with promising results.

Bayesian Test of Quasi-Independence in a Sparse Two-Way Contingency Table

  • Kwak, Sang-Gyu;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.495-500
    • /
    • 2012
  • We consider a Bayesian test of independence in a two-way contingency table that has some zero cells. To do this, we take a three-stage hierarchical Bayesian model under each hypothesis. For prior, we use Dirichlet density to model the marginal cell and each cell probabilities. Our method does not require complicated computation such as a Metropolis-Hastings algorithm to draw samples from each posterior density of parameters. We draw samples using a Gibbs sampler with a grid method. For complicated posterior formulas, we apply the Monte-Carlo integration and the sampling important resampling algorithm. We compare the values of the Bayes factor with the results of a chi-square test and the likelihood ratio test.

Bayesian estimation for finite population proportions in multinomial data

  • Kwak, Sang-Gyu;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.587-593
    • /
    • 2012
  • We study Bayesian estimates for finite population proportions in multinomial problems. To do this, we consider a three-stage hierarchical Bayesian model. For prior, we use Dirichlet density to model each cell probability in each cluster. Our method does not require complicated computation such as Metropolis-Hastings algorithm to draw samples from each density of parameters. We draw samples using Gibbs sampler with grid method. We apply this algorithm to a couple of simulation data under three scenarios and we estimate the finite population proportions using two kinds of approaches We compare results with the point estimates of finite population proportions and their standard deviations. Finally, we check the consistency of computation using differen samples drawn from distinct iterates.

Bayesian Methods for Wavelet Series in Single-Index Models

  • Park, Chun-Gun;Vannucci, Marina;Hart, Jeffrey D.
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.83-126
    • /
    • 2005
  • Single-index models have found applications in econometrics and biometrics, where multidimensional regression models are often encountered. Here we propose a nonparametric estimation approach that combines wavelet methods for non-equispaced designs with Bayesian models. We consider a wavelet series expansion of the unknown regression function and set prior distributions for the wavelet coefficients and the other model parameters. To ensure model identifiability, the direction parameter is represented via its polar coordinates. We employ ad hoc hierarchical mixture priors that perform shrinkage on wavelet coefficients and use Markov chain Monte Carlo methods for a posteriori inference. We investigate an independence-type Metropolis-Hastings algorithm to produce samples for the direction parameter. Our method leads to simultaneous estimates of the link function and of the index parameters. We present results on both simulated and real data, where we look at comparisons with other methods.

  • PDF

A Bayesian Approach to Detecting Outliers Using Variance-Inflation Model

  • Lee, Sangjeen;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.805-814
    • /
    • 2001
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for outliers problem and also analyze it in linear regression model using a Bayesian approach with the variance-inflation model. We will use Geweke's(1996) ideas which is based on the data augmentation method for detecting outliers in linear regression model. The advantage of the proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability The sampling based approach can be used to allow the complicated Bayesian computation. Finally, our proposed methodology is applied to a simulated and a real data.

  • PDF

ASSESSING POPULATION BIOEQUIVALENCE IN A $2{\times}2$ CROSSOVER DESIGN WITH CARRYOVER EFFECT IN A BAYESIAN PERSPECTIVE

  • Oh Hyun-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.3
    • /
    • pp.239-250
    • /
    • 2006
  • A $2{\times}2$ crossover design including carryover effect is considered for assessment of population bioequivalence of two drug formulations in a Bayesian framework. In classical analysis, it is complex to deal with the carryover effect since the estimate of the drug effect is biased in the presence of a carryover effect. The proposed method in this article uses uninformative priors and vague proper priors for objectiveness of priors and the posterior probability distribution of the parameters of interest is derived with given priors. The posterior probabilities of the hypotheses for assessing population bioequivalence are evaluated based on a Markov chain Monte Carlo simulation method. An example with real data set is given for illustration.