Browse > Article
http://dx.doi.org/10.15681/KSWE.2020.36.5.373

Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique  

Choi, Jeonghyeon (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University)
Jang, Suhyung (Integrated Water Resources Management Center, K-water Research Institute)
Kim, Sangdan (Department of Environmental Engineering, Pukyong National University)
Publication Information
Abstract
Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.
Keywords
Semi-distributed hydrological model; Markov-Chain Monte Carlo technique; Metropolis-Hastings algorithm; Parameter calibration; Parameter uncertainty;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 National Geographic Information Institute (NGII). (2014). National Territory Informaion Platform (NTIP), http://map.ngii.go.kr (accessed Sept. 2020).
2 Patil, S. D. and Stieglitz, M. (2015). Comparing spatial and temporal transferability of hydrological model parameters, Journal of Hydrology, 525, 409-417.   DOI
3 Raftery, A. E. and Lewis S. M. (1995). Implementing MCMC, Markov Chain Monte Carlo in Practice, Gilks, W. R., Richardson, S., and Spiegel-halter, D. J. (eds.), Chapman & Hall, London, 115-130.
4 Refsgaard, J. C. and Storm, B. (1996). Construction calibration and validation of hydrological models, In: Abbott, M.B., Refsgaard, J.C. (Eds.), Distributed hydrological modelling, Water Science and Technology Library, 22, Kluwer Academic Publishers, Dordrecht, The Netherlands, 41-54.
5 Ryu, J., Kang, H., Choi, J., Kong, D., Gum, D., Jang, C., and Lim, K. (2012). Application of SWAT-CUP for streamflow auto-calibration at Soyang-gang dam watershed, Journal of Korean Society on Water Environment, 28(3), 347-358. [Korean Literature]
6 Schoups, G. and Vrugt, J. A. (2010). A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-gaussian errors, Water Resources Research, 46, W10531.   DOI
7 Silvestro, F., Gabellani, S., Rudari, R., Delogu, F., Laiolo, P., and Boni, G. (2015). Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remot-sensing data, Hydrology and Earth System Sciences, 19, 1727-1751.   DOI
8 Sun, M., Zhang, X., Huo, Z., Feng, S., Huang, G., and Mao, X. (2015). Uncertainty and sensitivity assessments of an agricultural-hydrological model (RZWQM2) using the GLUE method, Journal of Hydrology, 534, 19-30.   DOI
9 Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part 1 - A discussion of principles, Journal of Hydrology, 10, 282-290.   DOI
10 Sun, N., Hall, M., Hong, B., and Zhang, L. (2012). Impact of SWMM catchment discretization: Case study in Syracuse, New York, Journal of Hydrologic Engineering, 19(1), 223-234.   DOI
11 Swann, A. and Koven, C. (2017). A direct estimate of the seasonal cycle of evapotranspiration over the Amazon basin, Journal of Hydrometeorology, 18, 2173-2185.   DOI
12 Zhang, W. and Li, T. (2015). The influence of objective function and acceptability threshold on uncertainty assessment of an urban drainage hydraulic model with generalized likelihood uncertainty estimation methodology, Water Resources Management, 29, 2059-2072.   DOI
13 Swiler, L. P. (2006). Bayesian methods in engineering design problems, Sandia National Laboratories report, SAND: 2005-3294.
14 Teweldebrhan, A. T., Burkhart, J. F., and Schuler, T. V. (2018). Parameter uncertainty analysis for an operational hydrological model using residual-based and limits of acceptability approaches, Hydrology and Earth System Sciences, 22, 5021-5039.   DOI
15 Todini, E. (2007). Hydrological catchment modelling: Past, present and future, Hydrology and Earth System Sciences, 11, 468-482.   DOI
16 Zhang, W., Li, T., and Dai, M. (2015). Uncertainty assessment of water quality modeling for a small-scale urban catchment using the GLUE methodology: a case study in Shanghai, China, Environmental Science and Pollution Research, 22(12), 9241-9249.   DOI
17 Zhang, Y., Pan, M., Sheffield, J., Siemann, A., Fisher, C., Liang, M., Beck, H., Wanders, N., MacCracken, R., Houser, P., Zhou, T., Lettenmaier, D., Pinker, R., Bytheway, J., Kummerow, C., and Wood, E. (2018). A Climate Data Record (CDR) for the global terrestrial water budget: 1984-2010, Hydrology and Earth System Sciences, 22, 241-263.   DOI
18 Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances, Philosophical Transactions of the Royal Society of London, 53, 370-418.   DOI
19 Abdi, B., Bozorg-Haddad, O., and Loaiciga, H. A. (2020). Analysis of the effect of inputs uncertainty on riverine water temperature predictions with a Markov chain Monte Carlo (MCMC) algorithm, Environmental Monitoring and Assessment, 192(2), 1-15.   DOI
20 Ahmadisharaf, E., Camacho, R. A., Zhang, H. X., Hantush, M. M., and Mohamoud, Y. M. (2019). Calibration and validation of watershed models and advances in uncertainty analysis in TMDL studies, Journal of Hydrologic Engineering, 24(7), 03119001.   DOI
21 Bishop, C. M. (2006). Pattern recognition and machine learning, New York, Springer.
22 Box, G. and Cox, D. (1964). An analysis of transformations, Journal of the Royal Statistical Society: Series B (Methodological), 26, 211-243.   DOI
23 Camacho, R. A., Martin, J. L., MacAnally, W., Dias-Ramirez, J., Rodriguez, H., Sucsy, P., and Zhang, S. (2015). A comparison of bayesian methods for uncertainty analysis in hydrauic and hydrodynamic modeling, Journal of the American Water Resources Association, 51(5), 1372-1393.   DOI
24 Campbell, E., Fox, D., and Bates, B. (1999). A bayesian approach to parameter estimation and pooling in nonlinear flood event models, Water Resources Research, 35, 211-220.   DOI
25 Carpenter, T. M. and Georgakakos, K. P. (2004). Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrological model, Journal of Hydrology, 298, 202-221.   DOI
26 Chung, S. W., Gassman, P. W., Kramer, L. A., Williams, J. R., and Gu, R. R. (1999). Validation of EPIC for two watersheds in southwest Iowa, Journal of Environmental Quality, 28(3), 971-979.   DOI
27 Choi, H. S. (2013). Parameter estimation of SWAT model using SWAT-CUP in Seom-river experimental watershed, Journal of the Korean Society of Civil Engineers, 33(2), 529-536 [Korean Literature]   DOI
28 Choi, J., Kim, R., and Kim, S. (2020). Development of distributed one-dimensional hydrologic model based on soil moisture simulation, Journal of Korean Society on Water Environment, 36(3), 229-244 [Korean Literature].   DOI
29 Chowdhury, S. and Sharma, A. (2007). Mitigating parameter bias in hydrological modelling due to uncertainty in covariates, Journal of Hydrology, 340, 197-204.   DOI
30 Engeland, K., Xu, C. Y., and Gottschalk, L. (2005). Assessing Uncertainties in a conceptual water balance model using Bayesian methodology, Hydrological Sciences Journal, 50(1), 45-63.   DOI
31 Georgakakos, K. P., Seo, D. J., Gupta, H., Schaake, J., and Butts, M. B. (2004). Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, Journal of Hydrology, 298, 222-241.   DOI
32 Green, C. H., Tomer, M. D., Di Luzio, M., and Arnold, J. G. (2006). Hydrologic evaluation of the soil and water assessment tool for a lager tile-drained watershed in Iowa, Transactions of the American Society of Agricultural and Biological Engineers, 49(2), 413-422.
33 Jia, H., Xu, T., Liang, S., Zhao, P., and Xu, C. (2018). Bayesian framework of parameter sensitivity, uncertainty, and identifiability analysis in complex water quality models, Environmental Modelling & Software, 104, 13-26.   DOI
34 Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, Z. F. (2009). Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling, Journal of Hydrology, 377, 80-91.   DOI
35 Han, F. and Zheng, Y. (2016). Multiple-response Bayesian calibration of watershed water quality models with significant input and model structure errors, Advances in Water Resources, 88, 109-123.   DOI
36 Harmon, R. and Challenor, P. (1997). A markov chain monte carlo method for estimation and assimilation into models, Ecological Modeling, 101, 41-59.   DOI
37 Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their application, Biometrika, 57, 97-109.   DOI
38 Hensen, J. L. M. and Lamberts, R. (2012). Building performance simulation for design and operation, Hensen, J. L. M. and Lamberts, R. (eds.), Routledge, London, U.K.
39 Joh, H. Park, J., Jang, C., and Kim, S. (2012). Comparing prediction uncertainty analysis techniques of SWAT simulated streamflow applied to Chungju dam watershed, Journal of Korea Water Resources Association, 45(9), 861-874. [Korean Literature]   DOI
40 Joseph, J. F. and Guillaume, J. H. A. (2013). Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT, Environmental modelling & software, 46, 292-298.   DOI
41 Kavetski, D., Kuczera, G., and Franks, S. W. (2006a). Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resources Research, 42, W03407.   DOI
42 Knighton J., Lennon, E., Bastidas, L., and White, E. (2016). Stormwater detention system parameter sensitivity and uncertainty analysis using SWMM, Journal of Hydrologic Engineering, 21(8), 05016014.   DOI
43 Kavetski, D., Kuczera, G., and Franks, S. W. (2006b). Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water Resources Research, 42, W03408.   DOI
44 Kim, J. K., Son, K. H., Noh, J. W., and Lee, S. U. (2008). Estimation of suspended sediment load in Imha-Andong watershed using SWAT model, Korean Society of Environmental Engineers, 30(12), 1209-1217.
45 Kim, M. H., Heo, T. Y., and Chung, S. W. (2013). Uncertainty analysis on the simulations of runoff and sediment using SWAT-CUP, Journal of Korean Society on Water Environment, 29(5), 681-690. [Korean Literature]
46 Kim, R., Won, J., Choi, J., Lee, O., and Kim, S. (2020). Application of Bayesian approach to parameter estimation of TANK model: Comparison of MCMC and GLUE methods, Journal of Korean Society on Water Environment, 36(4), 300-313 [Korean Literature]   DOI
47 Kim, S. M. (2017). Evaluation of applicability of SWAT-CUP program for hydrologic parameter calibration in hardware watershed, Journal of the Korean Soiety of Agricultural Engineers, 59(3), 63-70. [Korean Literature]   DOI
48 Korea Rural Development Administration (KRDA). (2010). Korean Soil Information System (KSIS), http://soil.rda.go.kr (accessed Sept. 2020).
49 Kuczera, G. (1983). Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty, Water Resources Research, 19, 1151-1162.   DOI
50 Kuczera, G. and Parent, E. (1998). Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm, Journal of Hydrology, 211, 69-85.   DOI
51 Lee, E. and Seo, D. (2011). Flow calibration and validation of Daechung lake watershed, Korea using SWAT-CUP, Journal of Korea Water Resources Association, 44(9), 711-720. [Korean Literature]   DOI
52 Kwon, H. H., Kim, J. G., and Park, S. (2013). Derivation of flood frequency curve with uncertainty of rainfall and rainfall-runoff model, Journal of Korea Water Resources Association, 46(1), 59-71. [Korean Literature]   DOI
53 Kwon, H. H., Kim, J. G., Lee, J. S., and Na, B. K. (2012). Uncertainty assessment of single event rainfall-runoff model using Bayesian model, Journal of Korea Water Resources Association, 25(5), 505-516. [Korean Literature]
54 Kwon, H. H., Moon, Y. I., Kim, B. S., and Yoon, S. Y. (2008). Parameter optimization and uncertainty analysis of the NWS-PC rainfall-runoff model coupled with Bayesian Markov Chain Monte Carlo inference scheme, Journal of Korean Society Civil Engineering, 28(4B), 383-392. [Korean Literature]
55 Li, Z., Shao, Q., Xu, Z., and Cai, X. (2010). Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: A case study of SWAT model applied to Yingluoxia watershed in northwest China, Journal of Hydrology, 385(1-4), 76-83.   DOI
56 Liang, S., Jia, H., Xu, C., Xu, T., and Melching, C. (2016). A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir, Science of the Total Environment, s560-561, 44-54.
57 Makowski, D., Wallach, D., and Tremblay, M. (2002). Using a bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods, Agronomie, 22, 191-203.   DOI
58 Lim, J., Kwon, H., Joo, H., Wang, W., Lee, J., You, Y., and Kim, H. (2019). Uncertainty analysis of stage-discharge curve using Bayesian and Bootstrap method, Journal of Wetlands Research, 21(2), 114-124.   DOI
59 Liu, Y. R., Li, Y. P., Huang, G. H., Zhang, J. L., and Fan, Y. R. (2017). A Bayesian-based multilevel factorial analysis method for analyzing parameter uncertainty of hydrological model, Journal of Hydrology, 553, 750-762.   DOI
60 Long, D., Longuevergne, L., and Scanlon, B. (2014). Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites, Water Resource Research, 50, 1131-1151.   DOI
61 Marshall, L., Nott, D., and Sharma, A. (2007). Towards dynamic catchment modelling: a Bayesian hierarchical modelling framework, Hydrological Processes, 21, 847-861.   DOI
62 Ministry of Envrionment (ME). (2007). Environmental Geography Information System (EGIS), http://http://egis.me.go.kr (accessed Sept. 2020).