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Abstract

We study Bayesian estimates for finite population proportions in multinomial prob-
lems. To do this, we consider a three-stage hierarchical Bayesian model. For prior, we
use Dirichlet density to model each cell probability in each cluster. Our method does
not require complicated computation such as Metropolis-Hastings algorithm to draw
samples from each density of parameters. We draw samples using Gibbs sampler with
grid method. We apply this algorithm to a couple of simulation data under three sce-
narios and we estimate the finite population proportions using two kinds of approaches.
We compare results with the point estimates of finite population proportions and their
standard deviations. Finally, we check the consistency of computation using different
samples drawn from distinct iterates.

Keywords: Contingency table, Dirichlet prior, finite population proportion, hierarchical
model, hyper-parameters.

1. Introduction

We often obtain contingency tables in various fields where the cells contain frequency
counts of outcomes. One of the frequently occurring problems in a contingency table is
estimating the population proportions in finite population setup. Usually the contingency
table consists of two binary variables. For example, if there is a contingency table between
smoking and lung cancer, smoking is the response variable and lung cancer is the group
variable. One can estimate the smoking proportions in each group. A more general problem
is estimating proportions in multinomial case.

There are lots of literatures on Bayesian methods for data analysis of contingency table. A
selective review of the literature for the Bayesian analysis of contingency table is proposed
by Leonard and Hsu (1994). Usually, the Bayesian inference for contingency tables is based
on the hierarchical linear model with normal priors (Lindley and Smith, 1972). For example,
Leonard (1972) used the logit transformation for binomial case and Novick et al. (1973)
used an arc-sine transformation. These approximations decrease the accuracy. Nandram
(1998) took the three-stage hierarchical model to estimate the finite population proportion
for contingency tables. He estimated the finite population proportions using the empirical
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distributions of the proportion. He used Metropolis-Hastings algorithm to draw samples. In
this paper we draw samples using Gibbs sampler with grid method and estimate the finite
population proportions.

The rest of the paper is organized as follows. In Section 2, we propose the Bayesian
hierarchical multinomial model and derive posterior densities to draw samples. We also
describe how to compute the finite population proportions using Gibbs sampler with grid
method. In Section 3, we provide numerical studies to illustrate our results. Section 4 presents
some discussions.

2. Methodology

We will use a three-stage hierarchical mutinomial model to allow for the uncertainty in
the estimation of all the hyper-parameters.

2.1. Modeling

Consider a I × J contingency table with cell counts {nij}, i = 1, ..., I, j = 1, ..., J . Let
pij denote the corresponding cell probability that a unit falls in the ith row and jth column
and pi = (pi1, ..., piJ)′. For ni = (ni1, ..., niJ)′, we assume that

ni|pi
ind∼ Multinomial(ni·,pi), i = 1, ..., I, (2.1)

where

f(ni|pi) = ni!

J∏
j=1

{
p
nij

ij

nij !

}
, 0 ≤ nij ≤ ni·, j = 1, 2, · · · , J.

As a prior we assume that

pi|µ, τ
ind∼ Dirichlet(µτ), i = 1, 2, · · · , I, (2.2)

where

π(pi|µ, τ)

∏J
j=1 p

µjτ−1
ij

D(µτ)
, 0 < pij < 1,

J∑
j=1

pij = 1 and µ = (µ1, · · · , µJ)′

with D(µτ) = {Γ(µjτ)} /Γ(τ), 0 < µj < 1 and
∑J
j=1 µj = 1. The model (2.1) and (2.2) are

usually used for many contingency tables in multinomial problems. Finally, we assume that

µ ∼ Dirichlet(µ(0)τ (0)), 0 < µj < 1,

J∑
j=1

µj = 1, µ(0) = (µ
(0)
1 , · · · , µ(0)

J )′ (2.3)

and

τ ∼ Γ(η(0), ν(0)), τ > 0, (2.4)
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where

π(τ) = (ν(0))η
(0)

τη
(0)−1e−ν

(0)τ/Γ(η(0)), τ > 0.

Hence we specify a three-stage hierarchical Bayesian model for multinomial data from (2.1)
to (2.4). For the hyper-parameters µ(0), τ (0), η(0) and ν(0), we assume that µ(0) = 1, τ (0) = 1,
η(0)=1 and ν(0)=0. This is a uniform prior for µ and a noninformative prior for τ . Obviously
these priors are proper.

2.2. Computation

Using Bayes’ theorem, the joint posterior density given the data is

π(p,µ, τ |n) ∝
I∏
i=1

f(ni|pi) · π(pi|µ, τ) · π(µ) · π(τ)

∝
I∏
i=1

(∏J
j=1 p

nij+µjτ−1
ij

D(µτ)

)
· π(µ) · π(τ),

where p = (p1, · · · ,pI)′ and n = (n1, · · · ,nI)′. To assess the computations we use the
Rao-Blackwellizations to get the posterior density of p. The joint posterior density given
the data can be expressed by π(p,µ, τ |n) = π(p|µ, τ,n) × π(µ, τ |n). By integrating out p
from the joint posterior, the marginal joint posterior density of µ, τ given n is given by

π(µ, τ |n) ∝
∫ 1

0

π(p,µ, τ |n)dp ∝
I∏
i=1

{
D(ni + µτ)

D(µτ)

}
· π(µ) · π(τ).

Let µ(j) denote the vector of all components of µ excluding the jth elements, j = 1, · · · , J .
Then we obtain the conditional posterior densities of (µj |µ(j), τ,n), j = 1, · · · , J−1. And the

conditional posterior density of (µJ |µ(J), τ,n) is obtained using µJ = 1−
∑J−1
j=1 µj because∑J

j=1 µj = 1. So each conditional posterior density of µj to draw the iterative Gibbs sampler
is given by

π(µj |µ(j), τ,n) ∝
I∏
i=1

{
D(ni + µτ)

D(µτ)

}
.

For τ , we transform τ to ρ = 1/(1+τ) because τ is expected to be small, so that drawing ρ
using a grid method is efficient. Then, the conditional posterior density of ρ|µ,n to execute
the iterative Gibbs sampler is as follows.

π(ρ|µ,n) ∝
I∏
i=1

{
D(ni + µ 1−ρ

ρ )

D(µ 1−ρ
ρ )

}
· 1

ρ2
.

We draw a sample (µ, τ) from the above full conditionals, each in turn, and iterate the
procedure by using Gibbs sampler with grid method. First, we consider µ1 where 0 ≤ µ1 ≤
1−

∑J−1
j′=1,j′ 6=1 µj′ . We draw µ1 using grid method by following these steps.
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· Step 1. Divide 100 intervals between 0 and 1 −
∑J−1
j′=1,j′ 6=1 µj′ and take the point

values Ik, k = 1, · · · , 101 (i.e., I1 = 0 and I101 = 1−
∑J−1
j′=1,j′ 6=1 µj′).

· Step 2. Calculate 100 mid-points (Mk, k = 1, · · · , 100) for each intervals.

· Step 3. Input the mid-points to the conditional posterior density and calculate the
values (ak, k = 1, · · · , 100) according to mid-points.

· Step 4. Calculate bk = ak/A, where A =
∑100
k=1 ak.

· Step 5. Generate u1 ∼ Uniform(0, 1).

· Step 6. Select kth interval made by Step 1, which satisfies bk ≤ u1 < bk+1.

· Step 7. Generate u2 ∼ Uniform(Ik, Ik+1) and µ1 = u2.

Next, we similarly draw µ2 with the above algorithm. But we should use the updated µ1

when we calculate 1−
∑J−1
j′=1,j′ 6=2 µj′ . Finally, we obtain µJ = 1−

∑J−1
j=1 µj , where µ1, · · · ,

µJ−1 are updated values. For ρ, we divide 100 intervals between 0 and 1 for the grid method.

2.3. Finite population proportions

Our finite population consists of I clusters with Ni· units in the ith cluster. The response
of each unit will fall in one of J categories. Let Nij be the total number of units which is
unknown, responding in the jth category and the ith cluster. Our objective is to estimate
finite population proportion for the jth category, namely

Pj = N−1
I∑
i=1

Nij , j = 1, · · · , J (2.5)

where N =
∑I
i=1

∑Ni

j=1Nij . We assume that N is known for simplicity. We can rewrite (2.5)
using seen part and unseen part, namely

Pj =

{(
I∑
i=1

nij

)
+

(
I∑
i=1

(Nij − nij)

)}
N−1, j = 1, · · · , J (2.6)

The seen part nij is known, but the unseen part Nij − nij is unknown. Thus
∑I
i=1 nij is

known from the observed data where n is given.
We obtain estimates of finite population proportions (Pj) by two methods. The first one is

implemented as follows. We generate pij from Dirichlet(µτ) and draw (Ni1−ni1, · · · , NiJ −
niJ) from Mulinomial(Ni· − ni·,pi) at each iterate of the grid method. Then we compute
Pj using (2.6). The posterior means and standard deviations of the Pj are obtained using
the estimated empirical distribution of the Pj . Next, the second method is implemented as
follows. The posterior mean of Pj |n is given by

E(Pj |n) =

{
I∑
i=1

nij +

I∑
i=1

(Ni· − ni·)E(pij |n)

}
N−1. (2.7)
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And the posterior variance of Pj |n is given by

V ar(Pj |n)=

{
I∑
i=1

(Ni·−ni·)2 ·V ar(pij |n)+

I∑
i=1

(Ni·−ni·)E(pij(1−pij)|n)

}
N−2. (2.8)

So we generate pij from Dirichlet(µτ) and calculate E(pij |n) and V ar(pij |n). Then we
calculate posterior mean and posterior variance of Pj |n using (2.7) and (2.8), respectively.

3. Numerical studies

We consider three scenarios: (1) both µ and τ are unknown, (2) µ is unknown but τ is
known, and (3) both µ and τ are known to implement the computation. We use 500 iterates
to “burn out” the grid method because all parameters drawn seem to be sufficiently stable
after 500th iterate. And we take every fifth value to obtain 2,000 iterates. This is a very
conservative algorithm, and it virtually does not have the autocorrelation. The result based
on 10,000 iterates show no changes for the relevant parameters.

In our simulation, we take Ni· = 100 and ni· = 20, i = 1, · · · , I where I = 10. We consider
two multinomial models, the first with two cells (µ1 = 0.4 = 1 − µ2) and the second with
five cells (µ1 = µ2 = 0.1, µ3 = µ4 = 0.2 and µ5 = 0.4). In two models, we start with
τ = 5, 10, 25.

Table 3.1 Comparison of the posterior distributions of finite population proportions
for two cell multinomial model by scenarios with µ1 = 0.4

τ Scenario
P1

Method 1 Method 2
Mean STD NSE Mean STD

5
1 0.3967 0.0271 0.0029 0.3968 0.0161
2 0.3946 0.0253 0.0020 0.3949 0.0145
3 0.4073 0.0198 0.0031 0.4072 0.0155

10
1 0.3944 0.0314 0.0029 0.3941 0.0136
2 0.4023 0.0352 0.0030 0.4022 0.0137
3 0.3936 0.0191 0.0028 0.3935 0.0150

25
1 0.4076 0.0282 0.0031 0.4072 0.0146
2 0.4138 0.0271 0.0039 0.4135 0.0138
3 0.3898 0.0159 0.0025 0.3899 0.0154

Table 3.1 presents the simulation results for the binomial case with µ1 = 0.4. The estimates
of finite population proportions are very similar for two methods in each scenario. The
differences are quite little for the three kinds of τ in both methods. Scenario 3 has smaller
standard deviations than those of scenario 1 and 2 in method 1. The increase of standard
deviation from scenario 3 to scenario 2 are 28%, 84% and 70% for τ = 5, τ = 10 and τ = 25,
respectively. But method 2 has similar standard deviations for scenario 1,2 and 3. Moreover,
the standard deviations of method 2 are smaller than those of method 1. The numerical
standard errors (NSE) are not much different in method 1.

We present the five cell multinomial case with µ1 = µ2 = 0.1, µ3 = µ4 = 0.2, µ5 = 0.4 and
τ = 25 in Table 3.2. The estimates of finite proportions are very similar for two methods
again. The standard deviations of scenario 2 are smaller than those of scenario 1 and 3 in
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Table 3.2 Comparison of the posterior distributions of finite population proportions for five cell
multinomial model by scenarios with µ1 = µ2 = 0.1, µ3 = µ4 = 0.2, τ = 25

Method Scenario Quantity P1 P2 P3 P4 P5

1

1
Mean 0.0973 0.0938 0.2626 0.1721 0.3740
STD 0.0210 0.0232 0.0249 0.0251 0.0313
NSE 0.0025 0.0023 0.0029 0.003 0.0041

2
Mean 0.1002 0.1112 0.2077 0.2223 0.3584
STD 0.0099 0.0093 0.0122 0.0138 0.0161
NSE 0.0020 0.0021 0.0022 0.0025 0.0026

3
Mean 0.1072 0.0854 0.1880 0.2224 0.3968
STD 0.0110 0.0097 0.0147 0.0151 0.0168
NSE 0.0011 0.0009 0.0014 0.0015 0.0016

2

1
Mean 0.0976 0.0943 0.2627 0.1721 0.3730
STD 0.0068 0.0073 0.0083 0.0099 0.0162

2
Mean 0.1012 0.1114 0.2067 0.2233 0.3573
STD 0.0072 0.0067 0.0104 0.0105 0.0142

3
Mean 0.1071 0.0857 0.1885 0.2221 0.3964
STD 0.0064 0.0072 0.0101 0.0104 0.0151

method 1. And the standard deviations of method 2 are smaller than those of method 1 in
all scenarios. The P2 and P3 of scenario 3 seem to be underestimated which is compared
with scenario 1 and 2 in both methods again.

According to Tables 3.1 and 3.2, two methods are very similar in the sense of point
estimates of finite population proportions. But the standard deviations of method 1 are
smaller than those of method 2.

We choose every fifth value thereafter to obtain 2,000 iterates. To check the consistency
of computation, we change the choosing number in iteration. We choose every `th value
in iteration, ` = 5, 10 and 20. In Table 3.3 we present the posterior distributions of finite
population proportions for five cells model by ` with µ1 = µ2 = 0.1, µ3 = µ4 = 0.2, τ = 10,
under the scenario 1. The posterior means are not change by different `. But the standard
deviations and numerical standard errors are quite different in both methods. Specially, NSE
of estimation tends to increase when ` become large.

4. Discussion

In this paper, we studied Bayesian estimates for finite population proportions in multino-
mial data. And we implemented 3 scenarios using two simulation data. Finally, we checked
the consistency for our algorithm by choosing different `th value.

It appears that the point estimates of finite population proportions do not differ between
method 1 and 2. But the standard deviations of method 2 is smaller than those of method
1. And our computation does not have any fluctuation.

Our computation has several valuable results. First, we compute the estimates of finite
population proportions using grid method. Our algorithm doesn’t need to use Metropolis-
Hastings (Chib and Greenberg, 1995), although the density of parameter doesn’t have any
closed form. This is a quite useful way to draw parameters because we can avoid finding out
some candidate densities and calculate the accepting probabilities. Second, the algorithm
can be processed for any number of I (≥ 1) clusters and J (≥ 2) columns. Third, we show
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Table 3.3 Comparison of the posterior distributions of finite population proportions for five cell
multinomial model by ` = 5, 10, 20 with µ1 = µ2 = 0.1, µ3 = µ4 = 0.2, τ = 10, under the scenario 1

Method Quantity ` P1 P2 P3 P4 P5

1

Mean
5 0.0973 0.0938 0.2626 0.1721 0.3740
10 0.0973 0.0947 0.2577 0.1724 0.3785
20 0.0979 0.0953 0.2507 0.1726 0.3748

STD
5 0.0210 0.0228 0.0251 0.0252 0.031
10 0.0231 0.0249 0.0301 0.0291 0.037
20 0.0233 0.0241 0.0299 0.0310 0.039

NSE
5 0.0025 0.0023 0.0029 0.0030 0.0041
10 0.0033 0.0036 0.0042 0.0041 0.0056
20 0.0046 0.0048 0.0061 0.0063 0.0079

2

Mean
5 0.0974 0.0937 0.2627 0.1725 0.3735
10 0.0963 0.0951 0.2579 0.1722 0.3789
20 0.0978 0.0963 0.2507 0.1737 0.3728

STD
5 0.0069 0.0072 0.0092 0.0102 0.0152
10 0.0068 0.0072 0.0093 0.0103 0.0151
20 0.0065 0.0072 0.0093 0.0106 0.0150

that method 2 is better than method 1 because method 2 has small standard deviations.
Finally, when we estimate the finite population proportions, we can reduce the time for
computation using method 2. When we use method 1, we should compute every Pj in each
iterate. But in method 2, we just compute pij in each iterate.
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